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Aamamaan Moxamman kajaanb

K OHEHKE OBJIACTH ITPUTAHKEHUA ITOJIO’KEHUSI PABHOBECHSL
HEJIMHENWHBIX CUCTEM YIIPABJIEHUSA

Cunme3s HeNUHEUHbIX cCUCmeM YRPAGNIeHUsl, NO-NPEXCHEMY, ABNACTCA CIONCHOU 3a0ayel, Nodmo-
My MHO2Ue UCCed08amenu NbIMAaromcs Haumu 3 gekmuenvle Cnocodbl U Memoobl peuleHust Mot
npobnemul. B pesymvmame makux ucciedo8anuil 6uLio paspadomaHo HeCKOIbKO Memooo8 CuHmesd
cucmem ynpagieHust OJisk HEMUHEHbIX 00bEKIM08, KadCOblll U3 KOMOPbIX 0Aém CUCIEMbL C PAZTUYHBIMU
ceoticmeamu. [1oamomy 803HUKIA HEOOXOOUMOCb CPABHUMb HEKOMOpble Memoobl, 4mobbl onpede-
JUMb, KAKOU U3 HUX 516/51emCsi OOCMAMOYHO NPOCIbIM U NO36OJISIem HAUMU HEIUHEUHYIO CUCTEMY C
ayuwumu ceéovicmsamu. C amoil yenvto, 6 OAHHOU pabome CPABHUBAIOMCSL OONYCIuMble 00IACHU HA-
YANILHLIX YCNIOBUIL, NPU KOMOPBIX CO30AHHbIE PA3TUYHBIMU MEMOOaMU HelUHelHble CUCIEMbL Ynpasie-
HUsL AGNSIOMCsL pabomocnocobnvimu. Paccnampusaiomest 06a anaiumuieckux Memooda npoekmuposa-
HUsL cucmem Ynpaeienust pasiuuHbIMU HeIUHEHbIMU MeXHUYeCKUMU 06beKmami, makumu KaK Mo-
bunbHble pobOmbL U MHO2UEe Opyeue obvbekmul. Dmo aneebpaudecKuii NOIUHOMUATLHO-MAMPUHBLI
Memoo, UCHONL3VIOWUT KEAZUTUHEHYIO MOO€b, U MemoO TuHeapu3ayuyu 00pamHoll 6513610, UCHONb-
3yroWUll npuseoeHuUe 3a0AHHbIX HelUHEHbIX YpasHeHull obvekma K gopme Bbpynosckozo. Oba pac-
CMOMPEHHBIX MEeNOoOa OalOm 0ZPAHUYEHHYIO 00ACTb NPUMSIICEHUS NONOJCEHUsL PAGHOBECUsL NOJLYYEH-
HBIX CUCEM YNPAGIEeHUs,, NOIMOMY IMU CUCIEMbL MOZYI PAbOmMAamy MobKO ¢ 0ZPAHUYEHHLIMU Ha-
YAnbHLIMU YC08UAMU. B camuve npueeden uucienHblil npumep npoeKmupo8anusi CUCmem YRpagieHus
015l 00H020 00Bekma smumu 08ymsi memoodamu. OyeHku obracmell NPUMANCEHUS] PAGHOBECUST IMUX
cucmem onpedensiomes ¢ nomowwpio MATLAB. B pesyrsmame ycmarnosneHo, umo aneedpauyeckoil
NOTUHOMUATLHO-MAPUYHOL MemOO NO03805Aem obecneyums 0060 001ACMb OONYCIMUMBIX HA-
YANILHLIX YCIOBULL, O CPAGHEHUIO ¢ MEMOoOoM auHeapusayuu oopamuol cessvio. Kpome moeo, aneo-
PUMM CUHME3A HENUHELIHbIX CUCIeM YNPAGIeHUs aNeeOpaudeckum NOIUHOMUATLHO-MAMPUYHIM Me-
modom siensiemcst 6oiee NPOCMbLM U NOJHOCMbIO GbINOIHAEMCSE HA Komnblomepe. Dmo Nno3eoisem
cuumams, Ymo peulenue 3a0ay NPOeKMUPOSARUsL CUCIEM YNPAGIeHUsl HEIUHEUHbIMU 0O0beKMaMmu yejie-
coobpasiee GbINONIHANb A12e0PAUYECKUM NOTUHOMUATLHO-MAMPULHBIM MENOOOM.

Henunetinvlii 06vexkm,; ocpanuiennvie Ha4aibHble YCI08Us; 001acmb npumsadicenus, anieed-
paudeckuil NOTUHOMUATLHO-MAMPUYHBLIL MEMOO, MEmooO TUHeaAPU3VIOUWUX 0OPaAMHbIX CE53€ll.

Almashaal Mohammad Jalal

TO ESTIMATION OF ATTRACTION AREA OF EQUILIBRIUM
OF NONLINEAR CONTROL SYSTEMS

Designing nonlinear control systems is still difficult so many researchers are trying to find
some useful ways and methods to solve this problem. As a result of such research, some methods
have been seen trying to design a good enough control system for nonlinear plants. But a disad-
vantage of these methods is the complexity, so it created a need to compare some methods to de-
termine which one is the easiest method to design a control system for nonlinear plants. It was
found a way to compare two methods, which is comparing the regions of initial conditions of the
systems which are designed using these methods. Two analytical nonlinear control systems design
methods are compared on the example of the design control systems mobile robots. The algebraic
polynomial-matrix method uses a quasilinear model, and the feedback linearization method uses
particular feedback. Both considered methods give a bounded domain of equilibrium attraction,
therefore the obtained control systems can be operated only with bounded initial conditions.
The numerical example of designing the control systems for one object by these methods and the
estimates of the attraction areas of the system’s equilibriums of these systems are given in the
paper. As a result of this paper, it was found that using the algebraic polynomial-matrix method
will get a bigger cross section of initial conditions of the plant’s variable than the same cross seC-
tion which is given by the feedback linearization method.

Nonlinear plant; bounded initial condition; attraction area; algebraic polynomial-matrix
method; linearizing feedbacks method.
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Introduction. Real-world systems are inherently nonlinear in nature at least when
considered over a wide operating range [1]. Recently, an active interest in the design and
analysis of nonlinear control systems has been shown in much research like process con-
trol, biomedical engineering, robotics, and spacecraft control [2]. One of the most effec-
tive reasons behind the growing interest in nonlinear control includes the need to deal
with model uncertainties and design simplicity [3].

A lot of researchers have tried designing an effective nonlinear control. New re-
search has been conducted to simplify the process of designing nonlinear systems using
transformation methods [4, 5]. Usually, the nonlinear plant equations are transformed
into such forms as the feedback linearization method [4—6], regularization method [7],
passivity method [8—10], backstepping method [11], Jordan controlled form method
[12], quasilinear model method [13, 14], position control method [15, 16], and others.

The aim of this paper is to find the areas of the initial conditions in which the con-
trol systems for one nonlinear plant are still asymptotically stable. In addition to finding
a control system that is designed by two analytical methods and making a comparison
between them to decide which design method gives a wider area of attraction under ini-
tial conditions.

This paper consists of 5 parts. The first is an introduction, the second one is a defi-
nition of the algebraic polynomial-matrix (APM) method, which uses the quasilinear
model, the third part is a short definition of the feedback linearization method, and the
fourth part is devoted to giving an example in order to evaluate the resulted area of at-
traction which is given by these two methods, and the last part is the conclusion.

Algebraic polynomial-matrix method. This method is used for the design a con-
trol system of linear or nonlinear objects of arbitrary order, which are given as
quasilinear model and have the form

X=AX)X+b(X)u, y=c' (X)X (1)
In this case, the desired control model is given in the form
T
u=u(g,x)= ko(x)g -k (X)x= ko(x)g _[k1(x)x1 + kz(x)xz t..t kn(x)xn]a (2)
where ki (x) are the coefficients of the matrix-row k' (X) calculated during the design,

which are the feedback coefficients on state variables Xi in a closed system, j = L_n;
and g = g(t) is the setting action. Usually, g(t) =g, *1(t) [17, 18].

Substituting (2) into (1) shows that the mathematical model of a closed system will
also have the form corresponding to the structure of a quasilinear model, i.e.

X =D(X)X +k,(X)b(x)g » (3)

where D(x) is also a functional matrix of the same dimension as A(X). The structure of the
matrix D(x), as follows from the substitution, is determined by the following expression:

D(X) = A(X) —b(x)- k" (x)- “)
For determining Kk;(X) are found polynomials which have the form

A(p,X)=det(pE-AX)=p"+a,_ ,(X)p"" +...+a,(X)p+a,(X), ()

Vi(p,x) =€ - Adj(PE — AX))-b(X) =V, , " () +... 4V, ()P +V o (X) .  (6)
In these expressions a,(x) are the coefficients of the characteristic polynomial of

the matrix A(X) of the controlled object (1); €; - i-th row of the identity NX N -matrix E;
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Adj(pE — A(X)) is the attached matrix; Vij(X) are the coefficients of the polynomials

V.(p,x)si=1n, j=0,n-1.
A polynomial is formed

D'(p)=[[(P-p)=p"+5,,p" +5,,p"> +..k5p+5,” D
i=1l

where ¢, are any positive numbers for which the roots of the polynomial D’(p)are
real, distinct and negative. Next, the difference of polynomials D"(p) and A(p,x) and its
coefficients are determined:

R(p,X)=D"(p) = A(p,X) =3, p"" +5,,()P" +.. £ 5P+ 5,(¥) - B®)

A system of algebraic equations is compiled:

Vl,O Voo o Vn,o k1 50
Vii Vor o Vi ) kz _ 1. 9
Vl,n—l V2,n—1 Vn,n—l kn §n—l

The matrix D(x) is calculated by use expression (4). The coefficient ko(x) from (2)
is found with condition y° = g, by the formula
. -1 10
K,(X') = (10)

(D (X)b(x)

where X" =limX(t), ,,, -
Feedback Linearization method. To apply this method, the equation (1) is repre-
sented:

x = A(X) +b(x)u,, (11)
A controllability matrix has the form in this case
u, =(b, [A,b], ....,[A,ad;"b]), (12)

in expression (12) ad ;b =b; adb=[4, b]=(0b/dx)A-(04/x)b;
ad /.ib =[ A, ad /;*‘b] , is a derivative of vector field b in direction of A(X) [21]. If the de-

terminate of controllability matrix (12) doesn’t equal to zero and columns are involute,
the transformation z(X) = T (X) are determined from conditions
ﬂadi~b:0’ i=0,n-2, ﬂadT‘lb;tO- (13)
ox " ox A

The transformation z(x) allows to find feedback uy(x), which converts the system
(11) into linear Brunovsky form with control v. Then the linear stabilizing control
V = V(z) can be determined very easily, and the transformation z(X) will give required
control U, = Uy(X) = V(Z(X)).

To evaluate the area of attraction of the equilibrium of nonlinear control systems,
we need firstly to design the control, which makes the system asymptotically system.
Then max and min of each of the initial conditions of the plant’s variables in which the
system is still stable determined, to do that, will take an example.
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Example. Suppose a pendulum is described as a form [19]
0 1 0 0
AX)=[5w(x) 0 2|,bx)=|2]" (14)
Tw(x) 0 1 1

where  w(x)=x"sinx;: A(X)=[g;(X)] is a functional NXN -matrix,
b(x) = [bi(x)] is functional n-vector [21]. To find the stabilizing control for (14) by

the considered methods.

Design by using algebraic polynomial-matrix method. According to this method
firstly we need to check satisfying of the controllability condition [13]. In this case
detU, (x) =—36x'sinx, - So we can find a control system only if |x]| < 7. The polyno-

mials can be determined as [20]:
A(p,x) =det(pE — A(X)) = p’ = p* + 0, ()P + 0ty (X)
V,(p,x)=eAdj(pE — A(x))b=2p ’
V,(p,X) =€,Adj( pE — A(X))b=2p’ (15)
V,(p,X) =e,Adj( pE — A(X))b = p> +9wW(X,).

where o, (X) = —5W(X); a,(X) = —9W(X) , &;is i-th a line of a unit matrix of E.

Let the desirable Hurwitz polynomial D*(p)=p® + 5’; P’ + 51* p'+ 53 of the matrix
Di(x) =A(X)~b(x)k' (x) and

R(P.X)=D'(p) ~ A(P,X)=(5; +1)p* + (5, + Sw(x,)p +3, + 9w(x,) . Therefore, polynomi-
als (15) will led to create the algebraic system:

0 0 9wx)| [k()] |8;+99w(x)

20 0 |ko)|=| 8 +5wex) | K< (16)
02 1 k,(X) 5, +1
where Kk (X) are some nonlinear functions, i = 1, 2, ... n [21]. The solution of system

(16) gives the required control:

U, (X)=—0,58, +2,5W(X,)]x, ~[0,58, = &, / 18W(X )]X, — —[1+8 / OW(X,)]X;»
Design by using feedback linearization method. According to this method, here

A(X)=[x, Ssinx, +2x%, 7sinx +%]: bex)=[0 2 1] . To find the transfor-

mation z(X) we need first to find the controllability = matrix

U, =(b ad;b ad;b)=(b [Ab] [ A[Ab]])- In this case

X|<m.

ad;b=(b/ox)A-(6A/x)-b=[-2 -2 -1T". (17)
ad3b=ad;(ad; b)=(d(ad;b) / ) A(X) — (0A/ dx)ad ;b = (18)
=[2 10cosx +2 14cosx +1]".

According to (17), (18), the controllability matrix has form
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U,(x)=[2 -2 10cosx +2

I -1 14cosx +1
The detU , =36c0sX, and columns of the matrix (19) form an involute set, i.e. the
controllability condition is satisfied if only |X1| <m/2 [20].

Now we can define the transformation zZ(X)=T(X)= [Tl(x) Tz(x) T3(x)]T starting

from the function Tl(x) ; this function is determined in [20]:
Tix(xX) b =2T 42 + T143 =0, (20)
Tix(x)adzh = —2Ty g — 2Ty —2T1 43 =0, (21
T1x(X)ad§b ==2T,, +(10cosX +2)T,,, +(14cosx, + T, ,; # 0. (22)

The conditions (20), (21) and (22) are used to define the function
T,(X)=T,(X;,X,,X,) which can be any function that satisfies these three conditions

X2

[20]. From the conditions (20) we can say that T{(X) depends only on x, and x;. On the
basis of a condition (21), (22) it is possible to accept T, (X) = X, — 2X, = Z, as the sim-
plest function. y
The function T, (%) is defined from expressionTz(x) =T,A(X)=-9sinX, =7,-
Similarly, T, (x) can be defined by expression: T,(X) =T,, A(X) =-9X,cosX, =2, . It
will easily be convinced that the transformation
Xy —2X,
Z(X)=T(X)=| —9sinXx,
—-9X, cos X

(23)

transforms the equation (11) where A(x) = [x2 S5sinx, +2%, 7sinX, + X, ]T ,
b(x) = [0 2 1]T into the linear equation of Brunovsky form:
2=[z, z, V[ (24)

Control v(z) at which the linear system (24) is asymptotically stabile evidently has an
appearance V =—0,2, — 9,Z, — 9,1, , at which the equation (24) passes into the equation

0 1 0 55
2=| 0 0 1 |z 25)
_50 _51 _52

Here the coefficients ¢, are chosen according to the requirements to character and
duration of transient of the control system (25).
The desired stabilizing control is obtained in form

9,(2%, —X,) +99,sin X, +93,x,cosX 5 .

2
+—s1nxl+x3—ﬁtanxl, |Xl|<n/2. (26)
18cos X, 2 2

uz(X) =

Further, we assert since the transformation z(X) is reversible, i.e. a nonsingular
transformation X(z) exists, then the systems (14), (26) are also asymptotically stable

(ymx(t) =0) if [x (t, )| <7/ 2.
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Modeling the systems using MATLAB with the designed control by using the two
methods was shown in [13], and it was noticed that both controls make the system asymptot-
ically stable with a duration of transient not more than 1.6 sec. Apparently from the stated
above expressions the domain of equilibrium attraction of the control systems obtained using
the compared methods is bounded that is caused by the controllability conditions of each
method. Therefore, these systems can be operated only with bounded initial conditions.

To find the boundary of initial conditions using MATLAB, the region of initial
conditions of each control system can be found in which the designed control system is
still stable. This region of initial conditions of the control system is designed by the
APM method shown in Fig. 1,a, and Fig. 1,b shows the same region of initial conditions
of the system is designed using the feedback linearization method.

Z

(5]

32 . 0 > 30Xy -4
a b

Fig. 1. Cross section of region of initial conditions given by the compared methods

It is noticed that the cross section of a region of initial conditions of the system
which is designed by APM method is bigger about 6 times than the same region of the
designed system using feedback linearization method. Also, it can be noticed that the
obtained cross section has two dimensions, where the first dimension (x-axis) describes
the variable X1, also the variable X2 is described by the second dimension (y-axis) of the
cross section, where this cross section was found by determining the maximum value of
each variable in which the designed control system makes the system asymptotically
stable, while initial condition of the third variables of the system x3,=0.

Conclusion. As a result of the study, it was found that both methods make it possi-
ble to synthesize a control system for nonlinear objects, but only if the condition of ob-
ject controllability is satisfied. Nonlinear control systems obtained by both methods are
asymptotically stable, but they have different regions of attraction of equilibrium. The
algebraic polynomial matrix method is simpler than the feedback linearization method.
This is due to the fact that the algorithm of the algebraic polynomial-matrix method has
certain steps, performing which we get a nonlinear control system, spending less time
and effort. At the same time, the feedback linearization method contains steps that re-
quire quite complex, but this method doesn’t completely define the transformations that
must be performed to obtain a mathematical model of the control system in the
Brunovsky form. In this paper, it is established that the feedback linearization method
leads to a nonlinear control system with a smaller range of acceptable initial conditions
for state variables, in which the control system is asymptotically stable. The algebraic
polynomial-matrix method gives a large range of initial conditions under which the de-
signed control system is stable. These conclusions follow from the above cross sections
of the attraction regions of both systems. In the future, it is supposed to define the region
of initial conditions as a region of three-dimensional space, since the systems have an
order equal to three.
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