DEVELOPMENT AND RESEARCH OF ALGORITHMS FOR FORECASTING FIRE HAZARDOUS SITUATIONS

Abstract

Early detection of fire hazard situations is a critical aspect of ensuring safety, as it helps to minimize the risk of material and human losses. Early detection of threats helps to preserve material assets, reduce the time for their restoration and, more importantly, save human lives. In this regard, a new approach to predicting fire hazard situations is proposed: an algorithm for training a model for predicting fire hazard situations, as well as an algorithm for predicting fire hazard situations, which are developed on machine learning models such as recurrent neural networks, random forest, optimization trees, autoregressive neural networks, etc. The study proposes to consider algorithms for predicting fire hazard situations developed on the basis of an analysis of existing forecasting algorithms, including methods based on machine learning, statistical models and simulation approaches, taking into account their advantages and disadvantages, accuracy indicators. The results of the study of the developed algorithms show that they are capable of predicting the outside temperature value of the sensor with an accuracy of 93.33% based on the test data from a complex of interconnected fire sensors, with errors of MAE = 1.72, MSE = 2.95 in the abnormal mode on the test data, and with an accuracy of 92.85% for the temperature inside the sensor, errors MAE = 1.66, MSE = 2.75. The accuracy on the test data in the normal mode for the outside temperature was 96.27%, errors MAE = 1.22, MSE = 1.48, and the accuracy of predicting the inside temperature was 96.16%, errors MAE = 1.24, MSE = 1.53. For the test sample of 500,000 readings, the errors of the predicted outside temperature were: MAE = 1.82, and MSE = 3.31, and the accuracy was 91.78%. The errors of the predicted temperature inside (temp2_inside) were: MAE = 1.89, and MSE = 3.57, and the accuracy was 91.35%.

References

1. Chao Gao, Honglei Lin, Haiqing Hu. Forest-Fire-Risk Prediction Based on Random Forest and

Backpropagation Neural Network of Heihe Area in Heilongjiang Province // Forests. – 2023. – DOI:

10.3390/f14020170.

2. Marshall A.G., Crimp S., Cary G.J., & Harris S. A Statistical Forecasting Model for Extremes of the

Fire Behaviour Index in Australia // Atmosphere. – 2024. – https://doi.org/10.3390/atmos15040470.

3. Sultan Md.A., Limboo N., Mukherjee A., Kharkar N., Islam S., Pokale S., Talekar S., & Khare M. Operational

Forest-Fire Spread Forecasting Using the WRF-SFIRE Model // Remote Sensing. – 2024.

– 16 (13). – 2480. – https://doi.org/10.3390/rs16132480.

4. Сингх С., Прибыльский А.В. Синтез системы сверхбыстрого обнаружения пожароопасных си-

туаций на основе комплекса взаимосвязанных датчиков // Известие ЮФУ. Технические науки.

– 2024. – № 2. – С. 121-132.

5. Сингх С., Прибыльский А.В. Алгоритм классификации пожароопасных ситуаций на основе ней-

росетевых технологий // Известия ЮФУ. Технические науки. – 2024. – № 3. – С. 138-147.

6. Сингх С., Прибыльский А.В. Классификации пожароопасных ситуаций на основе сети Колмого-

рова-Арнольда // Известие ЮФУ. Технические науки. – 2024. – № 6. – С. 6-15.

7. Саутин И.Г. Противопожарная защита: технологии и решения // Транспорт. Противопожарная

защита. Пожарная автоматика. Средства спасения. – 2018.

8. Саутин И.Г. Особое мнение. Можно ли доверить свою жизнь дымовому пожарному извещате-

лю? // Алгоритм безопасности. – 2019. – № 6.

9. Shchemelev V. & Ezhov Yu & Zub I. The influence of external factors determining the operation of the

positioning sensor in the condition of the far North // AIP Conference Proceedings. – 2023. – 2700.

– 060015. 10.1063/5.0125043.

10. El Abdi R., Labbé J., Le Strat F., & Carvou E. Effect of Vibration Frequency on Mechanical Behavior of

Automotive Sensor. – Springer, Cham, 2018. – P. 1-7. – https://doi.org/10.1007/978-3-319-96358-7_1.

11. NFPA 72: National Fire Alarm and Signaling Code. – 2019.

12. UL 268: Standard for Smoke Detectors for Fire Protective Signaling Systems. – 2019.

13. Khan Zanis Ali & Shin Donghwan & Bianculli Domenico & Briand Lionel. Impact of log parsing on

deep learning-based anomaly detection // Empirical Software Engineering. – 2024. – 29.

– 10.1007/s10664-024-10533-w.

14. Sellberg F & Buthke J & Sonne-Frederiksen Povl Filip & Nørkjær Gade Peter. Evaluating Four Types of

Data Parsing Methods for Machine Learning Integration from Building Information Models. – 2022.

15. Fan Gaolun. Random Forest Algorithm for Forest Fire Prediction. – 2023. – 10.1007/978-981-99-

4554-2_15.

16. Pande Chaitanya & Radwan Neyara & Heddam Salim & Othman Kaywan & Alshehri Fahad & Pal

Subodh & Pramanik Malay. Forecasting of monthly air quality index and understanding the air pollution

in the urban city, India based on machine learning models and cross-validation // Journal of Atmospheric

Chemistry. – 2024. – 82. – P. 1-26. – 10.1007/s10874-024-09466-x.

17. Salman Hasan & Kalakech Ali & Steiti Amani. Random Forest Algorithm Overview // Babylonian

Journal of Machine Learning. – 2024. – P. 69-79. – 10.58496/BJML/2024/007.

18. Bijan Ahmed & Al-Rahim Ali. Random Forest and Decision Tree Facies Classification Models for Well

Log Data of the Mishrif Formation from Basrah Oil Company, Southern Iraq // Iraqi Geological Journal.

– 2025. – 57. – P. 14-32. – 10.46717/igj.57.2E.2ms-2024-11-11.

19. Al_Janabia Samaher & AlShourbaji Ibrahim & Patel Ahmed. Applied Predicative Modeling to Improve

Recommendation Systems for Forecasting of Fire Occurrences. – 2015.

20. Ramadhan Rafiq & Ashari Wahid. Performance Comparison of Random Forest and Decision Tree

Algorithms for Anomaly Detection in Networks // Journal of Applied Informatics and Computing.

– 2024. – 8. – P. 367-375. – 10.30871/jaic.v8i2.8492.

21. Li Liping. Comparative Research on Diabetes Influencing Factors Based on Random Forest and Decision

Tree Models // Highlights in Science, Engineering and Technology. – 2023. – 72. – P. 231-242.

– 10.54097/7m4x7j04.

22. Hu Yaowen. Comparison and Analysis of the Effectiveness of Linear Regression, Decision Tree, and

Random Forest Models for Health Insurance Premium Forecasting // Advances in Economics, Management

and Political Sciences. – 2024. – 79. – P. 347-353. – 10.54254/2754-1169/79/20241754.

23. Cansler C. & Wright Micah & Mantgem Phillip & Shearman Timothy & Varner J. & Hood Sharon. Drought

before fire increases tree mortality after fire // Ecosphere. – 2024. – 15. – 10.1002/ecs2.70083.

Скачивания

Published:

2025-01-30

Issue:

Section:

SECTION I. INFORMATION PROCESSING ALGORITHMS

Keywords:

Пожарный датчик, Python, алгоритм прогнозирования, алгоритм обучения, прогнозирование, анализ алгоритмов прогнозирования