A REVIEW OF TRENDS IN THE DEVELOPMENT OF BIOMIMETIC UNDERWATER VEHICLES

Abstract

This paper presents an overview of some modern trends in the development and creation of biomimetic underwater vehicles. Biomimetics as an interdisciplinary field of science draws inspiration from natural forms, which allows developers to create original solutions for underwater research problems. The introduction notes the relevance of the problem and the advantages of biomimetic designs, and provides some successful examples of using these underwater objects. The purpose and objectives of the review are indicated, and the methods for collecting and analyzing information are described. The features of this interdisciplinary field of underwater vehicle development are noted, which are designed taking into account not only technology, but also using knowledge from the field of biology. The designs of biomimetic fish robots, materials for these underwater vehicles are presented, taking into account streamlining. The varieties of technologies for creating autonomous underwater vehicles, their features of movement and control in the aquatic environment are described: fish-like movements, jet thrust. The methods of controlling biorobots are emphasized, developments based on the movement of the fins of the manta ray are indicated. The importance of using deep reinforcement learning in modeling the control of an underwater vehicle is noted. Examples of the development of biomimetic underwater vehicles based on computational analysis of fluid dynamics, the occurrence of turbulence in various types of motion are presented in detail. Some developers have created bionic dolphin-like robots by combining mechanical properties and underwater planning, which has significantly improved the maneuverability and speed of these devices. Some examples of the implementation of the bionic design method in the field of shipbuilding and aviation are considered. The problems and prospects for the development of biomimetic technologies in relation to the development of underwater autonomous biomimetic vehicles are noted. In conclusion, the main results of the study and the prospects for the development of biomimetic technologies in marine engineering are indicated

References

1. Navy develops “Ghost Swimmer” drone that looks like a shark. Seriously.

https://www.csmonitor.com/USA/Military/2014/1216/Navy-develops-GhostSwimmer-drone-thatlooks-

like-a-shark.-Seriously (дата обращения: 24.10.2024).

2. Szymak P. Research on biomimetic underwater vehicles undertaken at Institute of Electrical Engineering

and Automatics // Maritime Technical Journal. – 2016. – Vol. 206 (3). – P. 107-119. – DOI:

10.5604/0860889X.1224752.

3. Malec M., Morawski M., Szymak P., Trzmiel A. Analysis of Parameters of Traveling Wave Impact on the

Speed of Biomimetic Underwater Vehicle // Solid State Phenomena. – 2014. – Vol. 210. – P. 273-279.

4. Szymak P., Praczyk T., Naus K., Szturomski B., Malec M., Morawski M. Research on biomimetic underwater

vehicles for underwater ISR // Ground/Air Multisensor Interoperability, Integration, and

Networking for Persistent ISR VII. – SPIE, 2016. – Vol. 9831. – P. 126-139. – DOI:

10.1117/12.2225587.

5. Бочаров А.Ю. Современные тенденции в развитии миниатюрных подводных аппаратов и робо-

тов за рубежом // Подводные исследования и робототехника. – 2006. – № 2. – С. 36-52.

6. Яцун С.Ф., Лушников Б.В., Казарян К.Г., Ворочаева Л.Ю., Ворочаев А.В. Конструктивные осо-

бенности бионического робота-рыбы // Известия Юго-Западного государственного университе-

та. Серия Техника и технологии. – 2017. – № 2 (23). – С. 94-102.

7. Яцун С.Ф., Королёв В.И., Бондырев В.Е., Лушников Б.В. Развитие малых и средних автономных

необитаемых подводных аппаратов на основе бионических (рыбоподобных) принципов движе-

ния для решения задач подразделений специального назначения ВМФ РФ // Известия ЮФУ.

Технические науки. – 2019. – № 1 (203). – С. 98-109. – DOI: 10.23683/2311-3103-2019-1-98-109.

8. Щур Н.А., Митин И.В., Коротаев Р.А., Миронов В.И., Казанцев В.Б. Экспериментальное исследова-

ние и численное моделирование гидродинамики рыбоподобного подводного робота // Робототехни-

ка и техническая кибернетика. – 2023. – Т. 11, № 1. – С. 40-44. – DOI: 10.31776/RTCJ.11105.

9. Аббасов И.Б., Тихомиров С.А. Обзор некоторых современных автономных биомиметических

подводных аппаратов // Cifra. Машиностроение. – № 3 (4). – DOI: https://doi.org/10.60797/

ENGIN.2024.4.1.

10. Ren K., Yu J. Research status of bionic amphibious robots: A review // Ocean Engineering. – 2021.

– Vol. 227. – DOI: 10.1016/j.oceaneng.2021.108862.

11. He Y., Xie Y., Pan G. [et al.]. Depth and Heading Control of a Manta Robot Based on S-Plane Control //

Journal of Marine Science and Engineering. – 2022. – Vol. 10. – P. 1698. – DOI: 10.3390/jmse10111698.

12. Hasan K. et al. Oceanic Challenges to Technological Solutions: A Review of Autonomous Underwater

Vehicle Path Technologies in Biomimicry, Control, Navigation and Sensing // IEEE Access.

– 2024. – P. 46202-46231. – DOI: 10.1109/ACCESS.2024.3380458.

13. Won-Shik Chu, Kyung-Tae Lee, Sung-Hyuk Song. Review of biomimetic underwater robots using

smart actuators // International journal of precision engineering and manufacturing. – 2012. – Vol. 13.

– P. 1281-1292. – DOI: 10.1007/s12541-012-0171-7.

14. Fomg-Chen Chiu, Jenhwa Guo, Ji-Gang Chen, Yen-Hwa Lin. Dynamic characteristic of a biomimetic

underwater vehicle // Proceedings of the 2002 International Symposium on Underwater Technology.

– 2002. – No. 1, Sec. 4. – DOI: 10.1109/UT.2002.1002422.

15. Rui Wang, Shuo Wang, Yu Wang, Long Cheng, and Min Tan. Development and Motion Control of

Biomimetic Underwater Robots: A Survey // IEEE Transactions on Systems, Man and Cybernetics:

Systems. – 2022. – Vol. 52, Issue 2. – P. 833-844. – DOI: 10.1109/TSMC.2020.3004862.

16. Haimo Bao, Yan Zhang, Meiping Song, Qiao Kong, Xiaohui Hu. A review of underwater vehicle

motion stability // Ocean Engineering. – 2023. – 287. – 115735.

17. Yu Wang, Chong Tang , Shuo Wang, Long Cheng, Rui Wang, Min Tan, and Zengguang Hou. Target

Tracking Control of a Biomimetic Underwater Vehicle Through Deep Reinforcement Learning // IEEE

Transactions on Neural Networks and Learning Systems. – 2022. – Vol. 33, Issue: 8. – P. 3741-3752.

– DOI: 10.1109/TNNLS.2021.3054402.

18. Serchi F.G., Arienti A., Laschi C. Biomimetic Vortex Propulsion: Toward the New Paradigm of Soft

Unmanned Underwater Vehicles // IEEE IEEE/Asme Transactions On Mechatronics. – 2013. – Vol. 18 (2).

– P. 204-2015.

19. Горюнов Д.С., Каримов Т.И., Каримов А.И., Рыбин В.Г., Колев Г.Ю. Проектирование рыбопо-

добного биоморфного движителя // Международная конференция по мягким вычислениям и

измерениям. – 2023. – Т. 1. – С. 97-100.

20. Chunlin Zhou and K. H. Low. Design and Locomotion Control of a Biomimetic Underwater Vehicle

With Fin PropulsionMember // IEEE/ASME Transactions on mechatronics. – 2012. – Vol. 17 (1).

21. Jenhwa Guo. Maneuvering and control of a biomimetic autonomous underwater vehicle // Auton

Robot. – 2009. – Vol. 26. – P. 241-249. – DOI: 10.1007/s10514-009-9117-z.

22. Praczyk T. Neural collision avoidance system for biomimetic autonomous underwater vehicle // Soft

Computing. – 2020. – Vol. 24. – P. 1315-1333. – https://doi.org/10.1007/s00500-019-03969-6.

23. Colgate J.E., Lynch K.M. Mechanics and Control of Swimming: A Review // IEEE Journal of Oceanic

Engineering. – 2004. – Vol. 29 (3). – P. 660-673.

24. Kim H., Lee B., Kim R. A Study on the Motion Mechanism of Articulated Fish Robot // The 2007

IEEE International Conference on Mechatronics and Automation, Proceedings, Harbin (China), 2007.

– P. 485-490.

25. Zhang Z., Wang Q., Zhang S. et all. Review of Computational Fluid Dynamics Analysis in Biomimetic

Applications for Underwater Vehicles // Biomimetics. – 2024. – Vol. 12 (2). – 33 p.

https://doi.org/10.3390/biomimetics9020079.

26. Fouladi K., Coughlin D.J. CFD Investigation of Trout-Like Configuration Holding Station near an

Obstruction // Fluids. – 2021. – Vol. 6. – P. 204-230.

27. Chung H, Cao S, Philen M, Beran P.S, Wang K.G. CFD-CSD Coupled Analysis of Underwater Propulsion

Using a Biomimetic Fin-and-Joint System // Comput. Fluids. – 2018. – Vol. 172. – P. 54-66.

28. Wright M., Luo Y, Xiao Q., Post M, Gorma W., Durrant A., Yue H. CFD-FSI Analysis on Motion Control

of Bio-Inspired Underwater AUV System Utilizing PID Control // In Proceedings of the 2020

IEEE/OES Autonomous Underwater Vehicles Symposium (AUV), IEEE: Piscataway, NJ, USA, 2020.

– P. 1-6.

29. Li R., Xiao Q., Liu Y., Li L., Liu H. Computational Investigation on a Self-Propelled Pufferfish Driven

by Multiple Fins // Ocean Eng. – 2020. – 197. – 106908.

30. Gao P., Huang Q., Pan G., Song D., Gao Y. Research on Swimming Performance of Fish in Different

Species // Phys. Fluids. – 2023. – 35. – 061909.

31. Luo Y., Xu T., Huang, Q., Hou Z., Pan G. A Numerical Investigation on Thrust and Torque Production of a

Batoid Fish with Asymmetric Pectoral Fins Flapping // Ocean Eng. – 2022. – Vol. 263. – P. 112-132.

32. Menzer A., Li C., Fish F., Gong Y., Dong H. Modeling and Computation of Batoid Swimming Inspired

Pitching Impact on Wake Structure and Hydrodynamic Performance // In Proceedings of the Vol. 2:

Multiphase Flow (MFTC); Computational Fluid Dynamics (CFDTC); Micro and Nano Fluid Dynamics

(MNFDTC), Toronto, Canada, 2022; American Society of Mechanical Engineers: New York, NY,

USA; p. V002T05A003.

33. Safari H., Abbaspour M., Darbandi M. Numerical Study to Evaluate the Important Parameters Affecting

the Hydrodynamic Performance of Manta Ray’s in Flapping Motion // Appl. Ocean Res. – 2021.

– Vol. 109. – 102559.

34. Xue Z., Li L., Song Y. The Research of Maneuverability Modeling and Environmental Monitoring

Based on a Robotic Dolphin // Appl. Bionics Biomech. – 2021. – 4203914.

35. Cao J., Li Z., Zhou X., Xia D. Numerical Exploration on Pitching Motion of Robotic Dolphin Realized by

Pectoral Fin // In Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation

(ICMA), Takamatsu, Japan, 8–11 August 2021; IEEE: Piscataway, NJ, USA, 2021. – P. 628-632.

36. Wu Z., Yu J., Yuan J., Tan M. Analysis and Verification of a Miniature Dolphin-like Underwater Glider

// Industrial Robot: An International Journal. – 2016. – 43.6. – P. 628-635.

37. Wu Z., Yang X., Zhou C., Yuan, J., Yu J. Dynamics Modeling and Simulation for a Gliding Robotic

Dolphin // In Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics

(ROBIO), Qingdao, China, 3–7 December 2016; IEEE: Piscataway, NJ, USA, 2016. – P. 829-834.

38. Wu Z., Yu J., Yuan J., Tan M., Zhang J. Mechatronic Design and Implementation of a Novel Gliding

Robotic Dolphin // In Proceedings of the 2015 IEEE International Conference on Robotics and

Biomimetics (ROBIO), Zhuhai, China, 6–9 December 2015; IEEE: Piscataway, NJ, USA, 2015.

– P. 267-272.

39. Zhang X., Wang J., Wan D. CFD Investigations of Evolution and Propulsion of Low-Speed Vortex

Ring // Ocean Engineering. – 2020. – 195. – 106687.

40. Bi X., Zhu Q. Dynamics of a Squid-Inspired Swimmer in Free Swimming // Bioinspiration &

Biomimetics. – 2019. – 15. – 016005.

41. Anderson E.J.; Grosenbaugh M.A. Jet Flow in Steadily Swimming Adult Squid // J. Exp. Biol. – 2005.

– 208. – P. 1125-1146.

42. Olcay A.B., Malazi M.T. The Effects of a Longfin Inshore Squid’s Fins on Propulsive Efficiency during

Underwater Swimming // Ocean Engineering. – 2016. – 128. – P. 173-182.

43. Luo Y., Xiao Q., Zhu Q., Pan G. Pulsed-Jet Propulsion of a Squid-Inspired Swimmer at High Reynolds

Number // Phys. Fluids. – 2020. – 32. – 111901.

44. Malazi T.M. Design Optimization of a Longfin Inshore Squid Using a Genetic Algorithm // Ocean

Engineering. – 2023. – 279. – 114583.

45. Дуршляк В.В., Кизилова Н.Н., Корякина О.А., Халин А.И., Шишов Н.И. Оценка аэродинамических

характеристик бионических форм // Механика. Исследования и инновации. – 2021. – Вып. 14. – С. 21

46. Галушко И.Д., Салмина В.А. и Макарьян Г.М. Разработка испытательного стенда для тестирова-

ния системы управления подводного робота с изменяемой геометрией корпуса // Динамика и

виброакустика. – 2019. – Т. 5, № 3. – DOI: 10.18287/2409-4579-2019-5-3-6-13.

Скачивания

Published:

2025-01-30

Issue:

Section:

SECTION III. COMPUTING AND INFORMATION MANAGEMENT SYSTEMS

Keywords:

Автономные беспилотные подводные аппараты, биомиметика, искусственные модели подводной фауны, беспилотные биомиметические подводные аппараты, рыбоподобные роботы, управление подводными аппаратами