SYNTHESIS OF THE DESIGN OF BROADBAND MATCHING OF A DIPOLE RADIATOR

Abstract

The classical half-wave dipole has a rather small operating frequency band. The paper presents a comprehensive method for extending the frequency band of a dipole radiator. The broadband matching effect is provided based on the principle of private compensation of complex load. As the basis of the matching device, a matching method using a reactive loop is used, which has a good matching quality with a complex load with minimal geometric dimensions. A feature of the method is the consideration of the issue of matching a single design "matching device – Radiator-reflector". For this, it is necessary to take into account the influence of both the structural elements of the transmission line matching and the mutual reaction of the reflector and the symmetrical dipole. The Purpose of the work is to synthesize the design of a symmetrical dipole radiator with a matching reactive loop. The paper presents a design containing a dipole excited from a two-wire line (which is also its struts), shorted at the end. This two-wire line is connected in the middle part to the coaxial supply line. The reflector has a complex shape in order to provide the necessary distance from the dipole to the reflector. For this purpose, the design of the dipole radiator has been formatted, the number, nomenclature and range of variable parameters have been determined, and a mathematical model has been formulated and verified. Based on this model, numerical studies of the design alignment level in a range of variable parameters have been carried out. Using a mathematical model, the possibility of broadband matching is demonstrated, and the parameters of the primary model for electrodynamic modeling are found. Based on the formed primary model, a computational experiment was conducted using 3D electromagnetic simulation (HFSS) software in order to determine the optimal geometry and dimensions of the radiator structure. In one case, the maximum value of the operating frequency band was chosen as the criterion of optimality, in the other - the maximum directional coefficient. These cases reflect the practical tasks of using emitters of this type. The possibility of matching in a frequency band of at least 80% has been demonstrated. The results of verification of the mathematical model, mathematical and electrodynamic modeling, as well as the layout of the radiator are presented

References

1. Milligan T.A. Modern Antenna Design: Second Edition // Modern Antenna Design. – Second ed.

– 2005. – P. 1-614. – DOI: 10.1002/0471720615. – EDN SSWHRH.

2. Balanis C.A. Antenna Theory: Analysis and Design. – 4th ed. – John Wiley & Sons, 2016.

3. Qin P.-Y., Weily A.R., Guo Y.J., Bird T.S. and Liang C.-H. Frequency Reconfigurable Quasi-Yagi

Folded Dipole Antenna // in IEEE Transactions on Antennas and Propagation. – Aug. 2010. –Vol. 58,

No. 8. – P. 2742-2747. – DOI: 10.1109/TAP.2010.2050455.

4. Обуховец В.А. Реконфигурируемые микрополосковые антенные системы // СВЧ-техника и те-

лекоммуникационные технологии. – 2020. – № 1-2. – С. 159-160. – EDN XVHHJG.

5. Chen H.-D. Broadband CPW-fed square slot antennas with a widened tuning stub // IEEE Trans. Antennas

Propag. – Aug. 2003. – Vol. 51. – P. 1982-1986.

6. Chen H.-D. and Chen H.-T. A CPW-fed dual-frequency monopole antenna // IEEE Trans. Antennas

Propag. – Apr. 2004. – Vol. 52. – P. 978-982.

7. Kuo F.-Y., Chou H.-T., Hsu H.-T., Chou H.-H. and Nepa P. A Novel Dipole Antenna Design With an

Over 100% Operational Bandwidth // in IEEE Transactions on Antennas and Propagation. – Aug.

2010. – Vol. 58, No. 8. – P. 2737-2741. – DOI: 10.1109/TAP.2010.2050434.

8. Kim J.I., Kim J.M., Yoon Y.J., and Pyo C.S. Wideband printed fat dipole fed by tapered microstrip

balun // in Proc. IEEE Antennas and Propagation Society Int. Symp. – Jun. 2003. – Vol. 3. – P. 32-35.

9. Guo Y.X., Zhang Z.Y., Ong L.C., and Chia M.Y.W. A new balanced UWB planar antenna // in Proc.

Eur. Conf. on Wireless Technology. – Oct. 2005. – P. 515-517.

10. He Q.-Q., Wang B.-Z., and He J. Wideband and dual-band design of a printed dipole antenna // IEEE

Antennas Wireless Propag. Lett. – 2008. – Vol. 7. – P. 1-4.

11. Обуховец В.А. Планарные микрополосковые излучатели с расширенным диапазоном частот //

СВЧ-техника и телекоммуникационные технологии. – 2023. – № 5. – С. 59-60.

12. Горемыкин Е.В., Петров Б.М., Костромитин Г.И. Логопериодические антенны с укороченными

вибраторами // Известия высших учебных заведений России. Радиоэлектроника. – 2001. – № 1.

– С. 24-30.

13. Пеньковская Т.К., Геворкян А.В., Юханов Ю.В. Варианты реализации диаграммообразующей

схемы фазированной антенной подрешетки на основе низкопрофильных печатных дипольных

антенн // Компьютерные и информационные технологии в науке, инженерии и управлении

(КомТех-2022): Матер. Всероссийской научно-технической конференции с международным

участием. В двух томах, Таганрог, 08–10 июня 2022 года. – Таганрог: ЮФУ, 2022. – С. 264-271.

14. Semenikhin A.I., Semenikhina D.V., Yukhanov Y.V. A Low Profile Dual-Polarized Tightly Coupled

Dipole Array of C-X-Band // Proceedings - 2020 7th All-Russian Microwave Conference, RMC 2020:

7, Moscow, 25–27 ноября 2020 года. – Moscow, 2020. – P. 140-142.

15. Gevorkyan A.V., Yukhanov Y.V. 5.11:1 Bandwidth Dual Polarized Dipole Antenna // 2018 IEEE Radio

and Antenna Days of the Indian Ocean, RADIO 2018, Wolmar, 15–18 октября 2018 года. – Wolmar,

2018. – P. 8572299.

16. Семенихин А.И., Семенихина Д.В., Юханов Ю.В. Низкопрофильная двухполяризационная ан-

тенная решетка сильно связанных диполей С-Х-диапазонов // Журнал радиоэлектроники.

– 2020. – № 12. – С. 14.

17. Воскресенский Д.И., Гостюхин В.Л., Максимов В.М., Пономарев Л.И. Устройства СВЧ и антен-

ны: учебник для вузов / ред. Воскресенский Д.И. – 3-е изд. – М.: Радиотехника, 2008. – 384 с.

18. Драбкин А.Л., Зузенко В.Л. Антенно-фидерные устройства. – М.: Сов. радио, 1961.

19. Фрадин А.З. Антенно-фидерные устройства: учеб. пособие для вузов связи. – М.: Связь, 1977.

20. Айзенберг Г.З. Антенны ультракоротких волн. – М.: Связьиздат, 1957.

21. Алексеев Ю.И., Белецкий А.А., Бровченко С.П. [и др.]. Радиоэлектронные системы локации и

связи: Коллективная монография / под ред. В.А. Обуховца. – М.: Радиотехника, 2008. – 208 с.

Скачивания

Published:

2025-01-30

Issue:

Section:

SECTION IV. NANOTECHNOLOGY, ELECTRONICS AND RADIO ENGINEERING

Keywords:

Дипольные антенны, дипольный излучатель, широкополосные антенны, согласующая цепь, шлейф