INVESTIGATION OF MEMRISTIVE NANOSCALE STRUCTURES WITH PROFILED INTERFACEFOR NEUROMORPHIC ELECTRONICS
Abstract
The article presents the results of the development of nanoscale memristive structures, the application of which is promising for the hardware implementation of artificial intelligence systems. A design of a memristive cell based on a titanium oxide film with a thickness ranging from 3 to 50 nm is proposed. The upper electrode of the cell features a profiled structure in the form of two high-aspect-ratio nanoscale tip structures (HANTS), where one tip has a radius of 10 nm, and the radius of the second tip varies in the range of 10 to 50 nm. Platinum was chosen as the material for the upper electrode due to its unique physicochemical properties, including high chemical inertness across a wide range of temperatures and aggressive environments, low electrical resistivity, and resistance to oxidation. These characteristics make platinum an optimal material for use in electronic devices and sensor systems where long-term stability and minimal energy losses during signal transmission are required. The results of modeling the electric field strength distribution in the interelectrode gap of the memristive cell are presented. The modeling was performed using COMSOL Multiphysics software, which solves systems of nonlinear partial differential equations using the finite element method, with a potential difference of 5 V between the electrodes. Based on the modeling results, the dependencies of the electric field strength on the geometric parameters of the memristive cell were obtained and analyzed. Local enhancement of the electric field strength was identified along the perimeter of the oxide-HANTS interface. The increase in the non-uniformity of the electric field strength grows with the thickness of the oxide film and can reach 13.4%. The obtained results can be used in the development of neuromorphic electronic components for robotic systems and artificial intelligence systems based on memristors
References
1. Haleem A., Javaid M., and Khan I.H. Current status and applications of Artificial Intelligence (AI) in medical
field: An overview // Current Medicine Research and Practice. – 2019. – Vol. 9, No. 6. – P. 231-237.
2. Javaid M., Haleem A., Singh R.P., and Suman R. Artificial intelligence applications for industry 4.0: A literature-
based study // Journal of Industrial Integration and Management. – 2022. – Vol. 7, No. 01. – P. 83-111.
3. Holmes W., and Tuomi I. State of the art and practice in AI in education // European journal of education.
– 2022. – Vol. 57, No. 4. – P. 542-570.
4. Seok H., Lee D., Son S., Choi H., Kim G., and Kim T. Beyond von Neumann architecture:
brain‐inspired artificial neuromorphic devices and integrated computing // Advanced Electronic Materials.
– 2024. – Vol. 10, No. 8. – P. 2300839.
5. Kumar S., Wang X., Strachan J. P., Yang Y., and Lu W.D. Dynamical memristors for higher-complexity
neuromorphic computing // Nature Reviews Materials. – 2022. – Vol. 7, No. 7. – P. 575-591.
6. Park S. O., Jeong H., Park J., Bae J., and Choi S. Experimental demonstration of highly reliable dynamic
memristor for artificial neuron and neuromorphic computing // Nature Communications.
– 2022. – Vol. 13, No. 1. – P. 2888.
7. Chua L. Resistance switching memories are memristors // Handbook of memristor networks. – 2019.
– P. 197-230.
8. Avilov V.I., Ageev O.A., Jityaev I.L., Kolomiytsev A.S., and Smirnov V.A. Investigation of memristor
effect on the titanium nanowires fabricated by focused ion beam // International Conference on Microand
Nano-Electronics 2016. – SPIE, 2016. – Vol. 10224. – P. 205-209.
9. Hong Q., Zhao L., and Wang X. Novel circuit designs of memristor synapse and neuron //
Neurocomputing. – 2019. – Vol. 330. – P. 11-16.
10. Avilov V.I., Tominov R.V., Vakulov Z.E., Zhavoronkov L.G., and Smirnov V.A. Titanium oxide artificial
synaptic device: Nanostructure modeling and synthesis, memristive cross-bar fabrication, and resistive
switching investigation // Nano Research. – 2023. – Vol. 16. – P. 10222-10233.
11. Avilov V.I., Tominov R.V., Vakulov Z.E., Rodriguez D.J., Polupanov N.V., and Smirnov V.A.
Nanoscale titanium oxide memristive structures for neuromorphic applications: atomic force
anodization techniques, modeling, chemical composition, and resistive switching properties //
Nanomaterials. – 2025. – Vol. 15 (1). – P. 75.
12. Yang C., Wang H., Cao Z., Chen X., Zhou G., Zhao H., Wu Zh., Zhao Y., and Sun B. Memristor‐based
bionic tactile devices: Opening the door for next‐generation artificial intelligence // Small. – 2024.
– Vol. 20, No. 19. – P. 2308918.
13. Du S., Song Y., Yuan J., Hao R., Wu L., Lei S., and Hu W. An artificial universal tactile nociceptor
based on 2D polymer film memristor arrays with tunable resistance switching behaviors // ACS Applied
Materials & Interfaces. – 2024. – Vol. 16, No. 26. – P. 33907-33916.
14. Mikhaylov A., Belov A., Korolev D., Antonov I., Kotomina V., Kotina A., Gryaznov E., Sharapov A.,
Koryazhkina M., Kryukov R., Zubkov S., Sushkov A., Pavlov D., Tikhov S., Morozov O., and Tetelbaum
D. Multilayer metal‐oxide memristive device with stabilized resistive switching // Advanced materials
technologies. – 2020. – Vol. 5, No. 1. – P. 1900607.
15. Brivio S., Spiga S., and Ielmini D. HfO2-based resistive switching memory devices for neuromorphic
computing // Neuromorphic Computing and Engineering. – 2022. – Vol. 2, No. 4. – P. 042001.
16. Saenko A.V., Tominov R.V., Jityaev I.L., Vakulov Z.E., Avilov V.I., Polupanov N.V., and Smirnov V.A.
Transparent zinc oxide memristor structures: Magnetron sputtering of thin films, resistive switching
investigation, and crossbar array fabrication // Nanomaterials. – 2024. – Vol. 14, No. 23. – P. 1901.
17. Abunahla H., Mohammad B., Homouz D., and Okelly C.J. Modeling valance change memristor device:
Oxide thickness, material type, and temperature effects // IEEE Transactions on Circuits and Systems
I: Regular Papers. – 2016. – Vol. 63, No. 12. – P. 2139-2148.
18. Ouaja Rziga F., Mbarek K., Ghedira S., and Besbes K. The basic I–V characteristics of memristor
model: simulation and analysis // Applied Physics A. – 2017. – Vol. 123. – P. 1-8.
19. Singh J., and Raj B. Comparative analysis of memristor models and memories design // Journal of
Semiconductors. – 2018. – Vol. 39, No. 7. – P. 074006.
20. Yang J.J., Miao F., Pickett M.D., Ohlberg D.A., Stewart D.R., Lau C.N., and Williams R.S. The mechanism
of electroforming of metal oxide memristive switches // Nanotechnology. – 2009. – Vol. 20,
No. 21. – P. 215201.
21. Miao F., Strachan J.P., Yang J., Zhang M.X., Goldfarb I., Torrezan A.C., Eschbach P., Kelley R.D.,
Medeiros-Ribeiro G. and Williams R.S. Anatomy of a nanoscale conduction channel reveals the mechanism
of a high-performance memristor // Advanced Materials. – 2011. – Vol. 23, No. 47. – P. 5633-5640.
22. Gale E. TiO2-based memristors and ReRAM: materials, mechanisms and models (a review) // Semiconductor
Science and Technology. – 2014. – Vol. 29, No. 10. – P. 104004.
23. Gul F. Nano-scale single layer TiO2-based artificial synaptic device // Applied Nanoscience. – 2020.
– Vol. 10, No. 2. – P. 611-616.
24. Jityaev I., Avilov V., Avakyan A., Fedotov A., Prakash C., and Smirnov V. Memristive structures based
on TiO2 nanodots: Simulation, formation and resistive switching // 2023 7th Scientific School Dynamics
of Complex Networks and their Applications (DCNA). – IEEE, 2023. – P. 108-111.
25. Светличный А.М., Спиридонов О.Б., Житяев И.Л., Волков Е.Ю., и Демьяненко М.В. Моделиро-
вание распределения напряженности электрического поля в наноструктурах с катодом прямо-
угольного сечения на основе пленок графена на SiC // Известия ЮФУ. Технические науки.
– 2015. – № 2 (163). – С. 225-236.
26. Bafrani H.A., Ebrahimi M., Shouraki S.B., & Moshfegh A.Z. A facile approach for reducing the working
voltage of Au/TiO2/Au nanostructured memristors by enhancing the local electric field // Nanotechnology.
– 2017. – Vol. 29, No. 1. – P. 015205.
27. Li C., Xu T., Pan R., Bao S., Yin K., Shen J., Zhu Y., Yatong Zhu, Hou S., and Sun L. Electric fielddependent
evolution dynamics of conductive filaments in 2d material-based planar memristors // ACS
nano. – 2024. – Vol. 18, No. 46. – P. 32196-32204.
28. Ge N., Zhang M.X., Zhang L., Yang J.J., Li Z., and Williams R.S. Electrode-material dependent switching in
TaOx memristors // Semiconductor Science and Technology. – 2014. – Vol. 29, No. 10. – P. 104003.
29. Khrapovitskaya Y.V., Maslova N. E., Grishchenko Y.V., Demin V.A., and Zanaveskin M.L. The effect
of the memristor electrode material on its resistance to degradation under conditions of cyclic switching
// Technical Physics Letters. – 2014. – Vol. 40. – P. 317-319.
30. Haidry A.A., Ebach-Stahl A., Saruhan B. Effect of Pt/TiO2 interface on room temperature hydrogen
sensing performance of memristor type Pt/TiO2/Pt structure // Sensors and Actuators B: Chemical.
– 2017. – Vol. 253. – P. 1043-1054.