ORGANIZING THE EXECUTION OF A MOBILE ROBOT OPERATION SCENARIO USING A NEUROMORPHIC TASK MANAGEMENT MECHANISM
Abstract
The paper presents the results of a study of the possibility of forming and executing a mobile robot operation scenario using neuromorphic information and control elements (logical elements "AND", "OR" and "NOT"; neuromorphic extrapolator; neuromorphic emergency detector; neuromorphic conditioned reflex formation mechanism). A brief description of these information and control elements is given. In this case, the segmented spike model of the CSNM neuron with the possibility of structural learning acts as a basic element. The trained CSNM model is capable of solving the binary classification problem, which implies the possibility of using it as a separate information control element – a state detector. It is proposed to organize the execution of the mobile robot operation scenario on the basis of universal neuromorphic modules using the specified neuromorphic information and control elements. The proposed task management mechanism boils down to the following. Universal neuromorphic modules used as switch blocks are prioritized. The detection of a particular situation is performed by means of a universal neuromorphic module, the priority of which is higher, which leads to the inhibition of all universal neuromorphic modules, the priority of which is lower than this one. By adding or removing universal neuromorphic modules, as well as changing their priority, we get the desired behavior of a mobile robot. The paper presents the results of a study of the proposed mechanism for organizing a robot operation scenario on both a computer model and a real robot. A special emulator was developed for computer modeling, which made it possible to comprehensively investigate the proposed solution. Moving towards the target in a room with partitions was chosen as a test task. The experimental results have shown the fundamental applicability of the proposed mechanism for forming and executing a robot operation scenario. The paper highlights the main disadvantages of the current implementation: the possibility of situations leading to looping of a set of actions performed by a mobile robot, as well as the need for manual coordination of the main parameters of the scene and the mobile robot (metric characteristics of the specified size of the scene zones, angular and linear velocity of the mobile robot, etc.). The ways to eliminate these disadvantages are proposed. The conclusion is made about the prospects of using the segmented spike model of a neuron and networks based on it for the tasks of controlling mobile robots
References
1. Brooks R. A robust layered control system for a mobile robot // IEEE Journal on Robotics and Automation.
– 1986. – Vol. 2, No. 1. – P. 14-23.
2. Arkin R.C. Motor Schema – Based Mobile Robot Navigation // The International Journal of Robotics
Research. – 1989. – Vol. 8, No. 4. – P. 92-112.
3. Brooks R.A. Intelligence without Reasoning // Proc. of Intern. Joint Conf. on Artificial Intelligence
(IJCAI'91). – 1991. – Vol. 1. – P. 569-595.
4. De Silva L.N.C., Ekanayake H. Behavior-based robotics and the reactive paradigm a survey // 2008
11th International Conference on Computer and Information Technology. – 2008. – P. 36-43.
5. Egerstedt M. Behavior Based Robotics Using Hybrid Automata // International Workshop on Hybrid
Systems: Computation and Control. – 2000. – P. 103-116.
6. Chen H.L. et al. Behavior adaptation for mobile robots via semantic map compositions of constraintbased
controllers // Frontiers in Robotics and AI. – 2023. – Vol. 10. – P. 917637.
7. Chetty R.M.K., Singaperumal M., Nagarajan T. Modeling and control of behavior based mobile robots
– a design perspective // Fifth International Conference on Precision,Meso, Micro and Nano Engineering.
– 2007. – P. 57-62.
8. Saffiotti A. Fuzzy Logic in Autonomous Robotics: behavior coordination // Procs. of the 6th IEEE Int.
Conf. on Fuzzy Systems. – 1997. – P. 573-578.
9. Fatmi A. et al. A fuzzy logic based navigation of a mobile robot // International Journal of Mechanical
and Materials Engineering. – 2008. – Vol. 2, No. 10. – P. 3569-3574.
10. Van Nguyen T.T., Phung M.D., Tran Q.V. Behavior-based navigation of mobile robot in unknown environments
using fuzzy logic and multi-objective optimization // arXiv preprint arXiv:1703.03161. – 2017.
11. Selekwa M.F. et al. Robot navigation in very cluttered environments by preference-based fuzzy behaviors
// Robotics and Autonomous Systems. – 2008. – Vol. 56, No. 3. – P. 231-246.
12. Lauri M., Hsu D., Pajarinen J. Partially observable markov decision processes in robotics: A survey //
IEEE Transactions on Robotics. – 2022. – Vol. 39, No. 1. – P. 21-40.
13. Alroobaea R. et al. Markov decision process with deep reinforcement learning for robotics data offloading in
cloud network // Journal of Electronic Imaging. – 2022. – Vol. 31, No. 6. – P. 061809-061809.
14. Saatchi R. Fuzzy Logic Concepts, Developments and Implementation // Information. – 2024. – Vol. 15, No. 10.
15. Иванова В.В., Демчева А.А., Корсаков А.М. Нейроморфный механизм управления заданием по
результатам анализа ситуации // Экстремальная робототехника. – 2024. – Т. 35, № 1. – С. 308-3015.
16. Benjamin B.V. et al. Neurogrid: A Mixed-analog-digital multichip system for large-scale neural simulations
// Proc. IEEE. – 2014. – Vol. 102, No. 5. – P. 699-716.
17. Merolla P.A. et al. A million spiking-neuron integrated circuit with a scalable commu-nication network
and interface // Science. – 2014. – Vol. 345, No. 6197. – P. 668-673.
18. Painkras E. et al. SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network
simulation // IEEE J. Solid-State Circuits. – 2013. – Vol. 48, No. 8. – P. 1943-1953.
19. Park J. et al. Hierarchical address-event routing architecture for reconfigurable large scale
neuromorphic systems // Proc. Int. Symp. Circuits Syst. – 2012. – P. 707-711.
20. Корсаков А.М., Астапова Л.А., Бахшиев А.В. Применение сегментной спайковой модели нейро-
на со структурной адаптацией для решения задач классификации // Информатика и автоматиза-
ция. – 2022. – Т. 21, № 3. – С. 493-520.
21. Корсаков А.М., Бахшиев А.В., Астапова Л.А., Станкевич Л.А. Реализация поведенческих функций на
спайковых нейронных сетях // Информатика и автоматизация. – 2021. – Т. 20, № 3. – С. 590-621.
22. Демчева A.А., Корсаков А.М., Фомин И.С. и др. Предупреждение возникновения критических
ситуаций в сложных технических системах с использованием нейроморфного подхода // Робо-
тотехника и техническая кибернетика. – 2023. – Т. 11, № 4. – С. 281-291.