MODEL AND ALGORITHM OF OPERATIONAL PLANNING OF LOGISTIC PROCESSES OF TIMELY DELIVERY OF CARGO WITH THE INTERACTION OF A GROUP OF ROBOTIC COMPLEXES

Abstract

The purpose of the study is to improve the quality of operational planning (program control) of logistics processes in the conditions of modern urban systems with the interaction of a group of robotic systems. The quality of management in this study will be assessed by the number of deliveries completed after established directive deadlines. The goal set during the study is decomposed into the following tasks: system analysis of the current state of research in the field of metropolitan logistics, implementation of a substantive and formal formulation of the problem of operational planning of logistics processes in a metropolis using a group of robotic complexes, development of a model and algorithm for operational planning of logistics processes in a metropolis using a grouping of robotic complexes, development of special model-algorithmic support and its software prototype for solving the problem of operational planning of logistics processes in a metropolis using a grouping of robotic complexes. Proactive (anticipatory) management of a group of robotic systems when solving transport and logistics problems in a metropolis within the framework of the “Smart City” concept allows increasing the economic efficiency of cargo delivery. The article examines the scientific and technical problem of synthesizing technologies (plans) for the timely delivery of small-sized cargo using a group of robotic systems. The scientific significance lies in the application of the concept of integrated (system) modeling and proactive (anticipatory) management, and the practical significance lies in ensuring timely delivery of goods using a group of robotic complexes in a metropolis. The article discusses an example of solving the problem of operational planning of logistics processes using the example of Innopolis using the characteristics of Yandex delivery robots (as robotic complexes). During the study, an analysis of various options for objective functions was carried out: maximizing profit and minimizing delivery time; profit maximization; minimizing time; minimizing the number of robotic systems. The following indicators were chosen to evaluate the results obtained: total profit from deliveries; the number of deliveries not delivered on time and the total number of completed orders. The most suitable objective functions for solving the problem are time minimization or simultaneous time minimization and profit maximization. In addition, the conclusion provides directions for further research

References

1. Grigoreva E., Ushakov V. Meteorological Data Monitoring, Processing and Control Based on Internet of

Things Technologies // Digital Systems and Information Technologies in the Energy Sector: Lecture

Notes in Networks and Systems / ed. by Ilin I., Youzhong M. – Cham: Springer, 2025. – Vol. 1244.

– P. 17. – DOI: 10.1007/978-3-031-80710-7_17.

2. Nekrasov A., Sinitsyna A. Proactive Management Transportation Logistics Infrastructure Life-Cycle

(Digital Transformation) // MATEC Web Conf. – 2021. – 334 02019. – P. 1-6. – DOI:

10.1051/matecconf/202133402019.

3. Ivanov D., Sokolov B., Chen W., Dolgui A., Werner F., Potryasaev S. A control approach to scheduling

flexibly configurable jobs with dynamic structural-logical constraints // IISE Transactions. – 2021.

– Vol. 53, No. 1. – P. 21-38. – DOI: 10.1080/24725854.2020.1739787.

4. Ватолкина Н.Ш. Управление качеством в сфере услуг в условиях цифровой трансформации

экономики. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2019. – 179 с.

5. Лапидус Л.В., Гостилович А.О., Омарова Ш.А. Особенности проникновения цифровых техно-

логий в жизнь поколения Z: ценности, поведенческие паттерны и потребительские привычки

интернет-поколения // Государственное управление. Электронный вестник. – 2020. – № 83.

– С. 271-293. – DOI: 10.24411/2070-1381-2020-10119.

6. Вишневский К.О., Гохберг Л.М., Дементьев В.В. и др. Цифровые технологии в российской эко-

номике / под ред. Л.М. Гохберга. – М.: НИУ ВШЭ, 2021. – 116 с. – DOI: 10.17323/978-5-7598-

2199-1.

7. Гусев Д.А., Егорова Т.В. Проблемы планирования транспортного обеспечения поставок в усло-

виях неопределенности // Менеджмент сегодня. – 2023. – Т. 1. – С. 44-54.

8. Appio F.P., Lima M., Paroutis S. Understanding Smart Cities: Innovation ecosystems, technological advancements,

and societal challenges // Technol. Forecast. Soc. Change. – 2019. – Vol. 142. – P. 1-14.

– DOI: 10.1016/j.techfore.2018.12.018.

9. Nahar P., Ghuraiya A., Voronkov I.M., Kharlamov A.A. IoT System Architecture for a Smart City // 2024

8th International Conference on Information, Control, and Communication Technologies (ICCT).

– Vladikavkaz, Russian Federation, 2024. – P. 1-5. – DOI: 10.1109/ICCT62929.2024.10874931.

10. Popov E., Strielkowski W., Vlasov M. Smart cities: knowledge generation effectiveness in the digital

economy // Proceedings of the International Scientific and Practical Conference on Digital Economy

(ISCDE 2019). – Paris: Atlantis Press, 2019. – DOI: 10.2991/iscde-19.2019.2.

11. Lohmer J., Lasch R. Production planning and scheduling in multi-factory production networks: a systematic

literature review // International Journal of Production Research. – 2021. – Vol. 59, Issue 7.

– P. 2028-2054.

12. Maganha I., Silva C., Ferreira L.M.D.F. The sequence of implementation of reconfigurability core

characteristics in manufacturing systems // Journal of Manufacturing Technology Management.

– 2021. – Vol. 32, No. 2. – P. 356-375.

13. Müller T., Walth S., Jazdi N., Weyrich M. Identification of Reconfiguration Demand and Generation of

Alternative Configurations for Cyber-Physical Production Systems // Advances in Automotive Production

Technology – Theory and Application / ed. by Weißgraeber P., Heieck F., Ackermann C.

– Springer Vieweg, Berlin, Heidelberg, 2021. – DOI: 10.1007/978-3-662-62962-8_8.

14. Захаров В.В., Соколов Б.В., Ушаков В.А. Специальное модельно алгоритмическое обеспечение

планирования информационных процессов при взаимодействии группировки подвижных мор-

ских объектов // Седьмая международная научно-практическая конференция «Имитационное и

комплексное моделирование морской техники и морских транспортных систем» (ИКМ

МТМТС-2023). – 2023. – С. 96-103.

15. Ushakov V. Operational Planning and Scheduling of Information Processes During the Interaction of Group

of an Intelligent Transport Technology Vehicle in an Airport Digital Space // Digital Systems and Information

Technologies in the Energy Sector: Lecture Notes in Networks and Systems / ed. by Ilin I.,

Youzhong M. – Cham: Springer, 2025. – Vol. 1244. – P. 16. – DOI: 10.1007/978-3-031-80710-7_16.

16. Dolgui A., Ivanov D., Sethi S.P., Sokolov B. Scheduling in production, supply chain and Industry 4.0 systems

by optimal control: fundamentals, state-of-the-art and applications // International Journal of Production Research.

– 2019. – Vol. 57, No. 2. – P. 411-432. – DOI: 10.1080/00207543.2018.1442948.

17. Sokolov B., Ushakov V., Zakharov V. Optimal planning and scheduling of information processes during

interaction among mobile objects // International Journal of Production Research. – 2024. – Vol. 62,

Issue 16. – P. 5905-5924. – DOI: 10.1080/00207543.2024.2302388.

18. Marrouche W., Harmanani H. M. Heuristic approaches for the open-shop scheduling problem // Information

Technology-New Generations: 15th International Conference on Information Technology.

– Springer International Publishing, 2018. – P. 691-699.

19. Neufeld J.S., Schulz S., Buscher U. A systematic review of multi-objective hybrid flow shop scheduling

// European Journal of Operational Research. – 2023. – Vol. 309. Issue 1. – P. 1-23.

20. Зимин И.Н., Иванилов Ю.П. Решение задач сетевого планирования сведением их к задачам оп-

тимального управления // Журнал вычислительной математики и математической физики.

– 1971. – № 3. – С. 632-641.

21. Потрясаев С.А. Синтез технологий и комплексных планов управления информационными процес-

сами в промышленном интернете: дисс. ... д-ра техн. наук: 05.13.01, 05.13.11. – СПб., 2020. – 312 с.

22. Охтилев М.Ю., Соколов Б.В., Юсупов Р.М. Интеллектуальные технологии мониторинга и

управления структурной динамикой сложных технических объектов: монография. – М.: Наука,

2006. – 410 с.

23. Микони С.В., Соколов Б.В., Юсупов Р.М. Квалиметрия моделей и полимодельных комплексов:

монография. – М.: РАН, 2018. – 314 с.

24. Захаров В.В., Баранов А.Ю., Соколов Б.В., Юсупов Р.М. Модели и алгоритмы централизованно-

го и децентрализованного планирования применения группировки подвижных объектов на ос-

нове теории дифференциальных игр // Морские интеллектуальные технологии. – 2023. – № 4.

– Ч. 1. – С. 171-178. – DOI: https://doi.org/10.37220/MIT.2023.62.4.021.

25. Моисеев Н.Н. Математические задачи системного анализа. – М.: Наука. Главная редакция фи-

зико-математической литературы, 1981. – 488 с.

Скачивания

Published:

2025-04-27

Issue:

Section:

SECTION I. PROSPECTS FOR THE APPLICATION OF ROBOTIC SYSTEMS

Keywords:

Logistics, RTK group;, grouping of robotic systems, synthesis of technologies, static model, special model and algorithmic support, linear programming, smart city, metropolis