MEASUREMENT MODELS OF ON-BOARD MAGNETOGRADIENT SYSTEMS

Abstract

The purpose of this study is to develop an improved model of a magnetically gradient measuring system, which plays a key role in solving the problem of simultaneous estimation of the parameters of the Earth's magnetic field (carrier) and the parameters of the anomalous magnetic field. The relevance of the study is due to the need to optimize the process of differential magnetometry. Differential magnetometry allows you to extract useful information from a magnetic field without the need for time-consuming and lengthy detailed mapping of the area. This is achieved by estimating the parameters of the magnetic field gradient, which significantly increases the information content and efficiency of determining the location of sources of magnetic anomalies. However, measurements of physical fields are significantly affected by various disturbances that may occur due to equipment and design errors, as well as due to their magnetic properties. These interferences distort the measurement results and reduce the accuracy of determining the magnetic field parameters. In this regard, the development of a model that takes into account the effects of interference and compensates for their effects is an extremely important task. The proposed model of a magnetically gradient measuring system will take into account the effects of interference and compensate for their effects, which will significantly improve the accuracy of estimating magnetic field parameters. In addition, the model will help solve the problem of jointly estimating the parameters of the carrier field and the constants included in the measurement model. This will increase the efficiency of differential magnetometry and make it more applicable in various fields. In particular, the improved magnetically gradient measuring system will be useful in geophysical mapping, mineral prospecting, environmental monitoring, as well as in specific combat conditions. For example, in geophysical mapping, it will allow you to more accurately determine the boundaries of various geological structures, which is important for the search for minerals. In the conditions of clearing the liberated territories of hidden objects left by the enemy, such as mines or underground structures, the system will help to identify them quickly and accurately, which will significantly increase the safety of military personnel and civilians. Thus, the development of an improved model of a magnetically gradient measuring system has a wide range of potential applications and is an important step in the development of differential magnetometry technologies

References

1. Дикарев В.И., Заренков В.А., Заренков Д.В. Методы и средства обнаружения объектов в укры-

вающих средах. – СПб.: Наука и Техника, 2004. – 280 с.

2. Щербаков Г.Н. Обнаружение скрытых объектов. – М.: Арбат-Информ, 2004. – 144 с.

3. Щедрин А.И., Осипов И.Н. Металлоискатели для поиска кладов и реликвий. – М.: Горячая ли-

ния – Телеком, 2001. – 192 с.

4. Любимов В.В. Новые приборы для измерения градиента источников магнитного поля в различ-

ных средах. Препринт № 3 (1142). – М.: ИЗМИРАН, 2001. – 10 с.

5. Афанасьев Ю.В. Средства измерения магнитного поля. – М.: Энергия, 1999. – 204 с.

6. Волковицкий А.К., Каршаков Е.В., Павлов Б.В. Магнитоградиентные измерительные системы и

комплексы: монография в 2-х т. Т. I. Принципы измерений и структура магнитоградиентных

комплексов. – М.: ИПУ РАН, 2018. – 149 с.

7. Волковицкий А.К., Каршаков Е.В., Павлов Б.В. Тхоренко М.Ю. Магнитоградиентные измери-

тельные системы и комплексы: монография в 2-х т. Т. II. Обработка информации и применение

магнитоградиентных комплексов. – М.: ИПУ РАН, 2018. – 135 с.

8. Вовенко Т.А., Волковицкий А.К., Павлов Б.В., Каршаков Е.В., Тхоренко М.Ю. Модели и структу-

ра бортовых измерений пространственных физических полей // Проблемы управления. – 2015.

– № 3. – С. 59-68.

9. Chadebec O. et al. A Review of Magnetostatic Moment Method // IEEE Transaction on Magnetics.

– 2006. – 4. – Р. 515-520.

10. DeVoe H. Optical properties of molecular aggregates. I. Classical model of electronic absorption and

refraction // J. Chem. Phys. – 1964. – 41. – Р. 393-400.

11. Lakhtakia A. Strong and Weak Forms of the Method of Moments and the Coupled Dipole Method for

Scattering of Time-Harmonic Electromagnetic Fields // International Journal of Modern Physics C.

– 1992. – 3. – Р. 583-603.

12. Alcaraz de la Osa R. et al. Extended discrete dipole approximation and its application to bianisotropic

media // Optics Express. – 2010. – 23. – Р. 23865-23871.

13. Kahnert F.M. Numerical methods in electromagnetic scattering theory // Journal of Quantitative Spectroscopy

and Radiative Transfer. – 2003. – Vol. 79-80. – Р. 775-824.

14. Yurkin M.A., Hoekstra A.G. The discrete dipole approximation: an overview and recent developments //

Journal of Quantitative Spectroscopy and Radiative Transfer. – 2007. – Vol. 106, No. 1-3. – Р. 558-589.

15. Jackson J.D. Classical Electrodynamics. – New York: John Wiley @ Sons Inc., 1999. – 808 р.

16. Leliak P. Identification and Evaluation of Magnetic-Field Sources of Magnetic Airborne Detector Equipped

Aircraft // IRE Transactions on Aerospace and Navigational Electronics. – 1961. – Vol. ANE-8, No. 3.

– P. 95-105.

17. Groom R.L., Jia R.and Lo B. Magnetic Compensation of Magnetic Noises Related to Aircraft’s Maneuvers

in Airborne Survey // Symposium on the Application оf Geophysics to Engineering and Environmental

Problems. – 2004. – P. 1-8. – DOI: 10.4133/1.2923247.

18. Jia J., Lo B. and Groom R. Final Report on Improved Aeromagnetic Compensation // Report for Ontario

Mineral Exploration Technology Program Project # P02-03-043. – 2004. – 65 p. – DOI:

10.13140/RG.2.1.2072.0402.

19. Noriega G. Aeromagnetic Compensation in Gradiometry – Performance, Model Stability, and Robustness

// IEEE Geoscience and Remote Sensing Letters. – 2015. – Vol. 12, No. 1. – P. 117-121.

20. Patella D., Mauriello P., Siniscalchi A. A Sea-to-Ground Magnetovariational Method // Offshore

Technology Conference, Houston, Texas, 1999. – Р. 845-850

Скачивания

Published:

2025-04-27

Issue:

Section:

SECTION III. COMMUNICATION, NAVIGATION AND GUIDANCE

Keywords:

Magnetic field, magnetogradient measuring systems, tensor gradiometers, vector gradiometers