MULTYCHANEL ADAPTIVE PHASE LOCK LOOP SYSTEM FOR GNSS RECEIVER
Abstract
Satellite navigation equipment often operates under conditions of a priori uncertainty of the parameters of the mutual dynamics between the transmitter and the consumer and the signal-to-noise ratio of the received signals of satellite radio navigation systems. Classical Bayesian algorithms for Phase lock loop system require a priori knowledge about the parameters of the phase process dynamics and the signal-tonoise ratio (SNR) of the received signals. As a result, the operation of such algorithms under conditions other than that a priori specified is not optimal to the criterion of minimum error variance. Moreover, a sudden change in the signal-to-noise ratio or dynamics can lead to a tracking failure in such a system. The purpose of this work is to develop an optimal phase tracking system that is adaptive to the dynamics of the phase process and the signal-to-noise ratio in order to maintain phase tracking in the widest possible range of operating conditions while tracking global navigation satellite system signal. An adaptive multichannel phase lock loop system has been synthesized as a result of formulation and solution of signal processing problem in terms of the statistical synthesis theory. Adaptivity to the changing power of the received signal is achieved by including the signal-to-noise ratio [dBHz] in the vector of estimated filter parameters. Adaptability to the intensity of the phase change dynamics is achieved through the use of a multi-channel filtration system. Statistical modeling of an adaptive multichannel phase lock loop tracking system with a complex algorithm for tracking the code delay of the signal of satellite radio navigation systems has been carried out. The values of the sensitivity of phase tracking under various dynamic conditions are determined. The adaptive multichannel phase lock loop system is able to withstand an signal-tonoise ratio jump from 50 to 10 dBHz and back without loss of phase tracking in low dynamics conditions (only the drift of the reference quartz oscillator). The AMPLL system is able to withstand abrupt transitions of dynamics between low and high (the sinusoidal acceleration 10g and sinusoidal jerk 10 g/s) without loss of phase tracking under the 24 dBHz signal-to-noise ratio. Thus, in real conditions, when the dynamics of the GNSS receiver and the SNRs of the received signals change in an unpredictable way, the AMPLL system keep tracking in a much wider range of conditions than the non-adaptive PLL
References
1. Шаврин В.В., Тисленко В.И., Лебедев В.Ю., Конаков А.С., Филимонов В.А., Кравец А.П. Квази-
оптимальная оценка параметров сигналов ГНСС в режиме когерентного приёма с использова-
нием алгоритма сигма-точечного фильтра Калмана // Гироскопия и навигация. – 2016. – № 3
(94). – С. 26-37.
2. Шаврин В.В., Тисленко В.И., Лебедев В.Ю., Филимонов В.А., Конаков А.С. Сигма-точечный ал-
горитм фильтра Калмана в задаче оценки параметров сигналов ГНСС в некогерентном режиме
слежения в аппаратуре автономной навигации космических аппаратов // Гироскопия и навига-
ция. – 2018. – Т. 26, № 3. – С. 23-39.
3. Jong-Hoon Won and Bernd Eissfeller. A Tuning Method Based on Signal-to-Noise Power Ratio for
Adaptive PLL and its Relationship with Equivalent Noise Bandwidth // IEEE Communications Letters.
– February 2013. – Vol. 17, No. 2. – P. 393-396.
4. Jong-Hoon Won. A Novel Adaptive Digital Phase-Lock-Loo с комплексным алгоритмом ССЗ в
нестационарных с комплексным алгоритмом ССЗ в нестационарных p for Modern Digital GNSS
Receivers // IEEE Communications Letters. – January 2014. – Vol. 18, No. 1. – P. 46-49.
5. Dah-Jing Jwo and Sheng-Hung Wang. Adaptive Fuzzy Strong Tracking Extended Kalman Filtering
for GPS Navigation // IEEE Sensors Journal. – May 2007. – Vol. 7, No. 5. – P. 778-789.
6. Jordi Vilà-Valls, Pau Closas, Carles Fernández-Prades, Jose A. López-Salcedo, and Gonzalo Seco-
Granados. Adaptive GNSS Carrier Tracking Under Ionospheric Scintillation: Estimation vs. Mitigation
// IEEE Communications letters. – June 2015. – Vol. 19, No. 6. – P. 961-964.
7. Emanuela Falletti, Marco Pini, Letizia Lo Presti. Low Complexity Carrier-to-Noise Ratio Estimators
for GNSS Digital Receivers // IEEE Transactions on aerospace and electronic systems. – January
2011. – Vol. 47, No. 1. – P. 420-437.
8. Перов А.И. Статистическая теория радиотехнических систем: учеб. пособие. – 2-е изд. перераб.
и доп. – М.: Радиотехника, 2022. – 840 с.
9. Demetrios G. Lainiotis. Partitioning: A Unifying framework for adaptive systems, I: Estimation //
IEEE. – August 1976. – Vol. 64, No. 8. – P. 1126-1143.
10. Перов А.И. Адаптивная фильтрация сообщения с неизвестными статистическими характери-
стиками // Известия вузов СССР. Серия: Радиоэлектроника. – 1980. – Т. 23, № 4. – С. 40-45.
11. Перов А.И. Адаптация линейных систем фильтрации // Радиотехника и электроника. – 1987.
– Т. 33, № 8. – С. 40-45.
12. Первачев С.В., Перов А.И. Адаптивная фильтрация сообщений. – М.: Радио и связь, 1991. – 160 с.
13. Magill D.T. Optimal adaptive estimation of sampled stochastic processes // IEEE Transactions on
Automatic Control. – 1965. – AC-10. – P. 434-439.
14. Rong Li and V. Jilkov. Survey of maneuvering target tracking. Part V. multiple-model methods // IEEE
Transactions on Aerospace and Electronic Systems. – 2005. – Vol. 41, No. 4. – P. 1255-1321.
15. Sebastian Dingler. State estimation with the Interacting Multiple Model (IMM) method.
– https://doi.org/10.48550/arXiv.2207.04875 – июль 2022 г.
16. Перов А.И., Замолодчиков В.Н., Чиликин В.М. Радиоавтоматика: учебник для вузов. – М.: Ра-
диотехника, 2014. – 320 с.
17. Understanding GPS: Principles and Applications / ed. by E.D. Kaplan. – Artech House, Inc., Norwood,
Massachusetts, 1996. – P. 86-92.
18. Шатилов А.Ю. Использование критерия срыва слежения при оценке помехоустойчивости сле-
дящих систем // Радиотехника. – 2010. – № 11. – С. 25-33.
19. Шатилов А.Ю. Исследование кратковременных нестабильностей кварцевых опорных генера-
торов для применения в НАП // Радионавигационные технологии. – 2013. – № 3. – С. 86-92.
20. Бакитько Р.В., Дворкин В.В., Карутин С.Н., Корогодин И.В., Нагин И.А., Перов А.И., Поваляев А.А.,
Фаткулин Р.Ф., Шатилов А.Ю. ГЛОНАСС. Модернизация и перспективы развития: монография /
под ред. А.И. Перова. – М.: Радиотехника, 2020. – 1072 c.