ASSESSMENT OF THE HARDWARE COMPOSITION OF ONBOARD COMPUTING SYSTEMS OF ROBOTIC COMPLEXES BASED ON THE TASKS BEING SOLVED
Abstract
In the development of modern robotic complexes (RC), there is a significant diversity in both hardware and software solutions, which creates additional challenges in selecting a rational hardware and software composition to ensure the required computational power and to effectively address the assigned tasks. On one hand, it is often necessary to work with an already installed set of computing systems (CS) that form the onboard computing system (OCS) of the RC, which substantially limits the possibilities for modifying the software composition and necessitates the adaptation of algorithms to fixed hardware resources. On the other hand, when there is an opportunity to modify or create a new hardware composition, it becomes necessary to choose a hardware configuration that can meet the computational requirements of the tasks being solved. This article proposes a methodology for assessing the hardware composition of the OCS of RCs based on the tasks being solved, relying on the use of multiversion programming and the creation of solution passports. Each variant of the software solution for a specific task is supplemented by a structured passport that contains both quantitative and qualitative characteristics, allowing for a detailed comparative analysis. Based on these solution passports, a mathematical model is developed that enables the selection of a set of computing devices capable of executing all the assigned tasks while simultaneously minimizing the total cost, energy consumption, or other operational characteristics of the OCS. Mathematically the problem under consideration is reduced to a generalized multiplicative multidimensional knapsack problem with multi-choice and additional constraints, which allows both resource and topological dependencies among the tasks being solved to be taken into account. Experimental results obtained using the developed simulation platform are presented, demonstrating the practical applicability of the methodology and confirming the possibility of using it to obtain quantitative estimates of the hardware composition variants of the OCS of RCs. This approach can be adapted for various types of RCs, which facilitates its use in related studies in the field of optimizing computing systems for robotic complexes
References
1. Valavanis K.P., Saridis G.N. Intelligent robotic systems: theory, design and applications // Springer
Science & Business Media. – 2012. – Vol. 182.
2. Lai R., Lin W., Wu Y. Review of Research on the Key Technologies, Application Fields and Development
Trends of Intelligent Robots // International Conference on Intelligent Robotics applications.
– Springer, Cham, 2018. – P. 449-458.
3. Макаров И.М., Лохин В.М. Интеллектуальные системы автоматического управления. – М.:
Физматлит, 2001.
4. Rault R., Trentesaux D. Artificial intelligence, autonomous systems and robotics: legal innovations //
Service Orientation in Holonic and Multi-Agent Manufacturing: Proceedings of SOHOMA 2017.
– 2018. – P. 1-9.
5. Суминов К.А., Бочаров Н.А. Исследование ограничений применимости микропроцессоров ряда
Эльбрус для решения задач технического зрения // Известия ЮФУ. Технические науки. – 2022.
– № 1 (225). – С. 279-288. – DOI: 10.18522/2311-3103-2022-1-279-288. – EDN GABABO.
6. Rojas-Perez L.O., Martínez-Carranza J. On-board processing for autonomous drone racing: An overview
//Integration. – 2021. – Vol. 80. – P. 46-59.
7. Gonzalez-Arjona D. et al. On-board implementation // Modern Spacecraft Guidance, Navigation, and
Control. – Elsevier, 2023. – P. 685-712.
8. Кирилюк М.А., Бочаров Н.А., Парамонов Н.Б., Суминов К.А. Разработка и оценка эффективно-
сти метода организации вычислений на специализированных вычислительных системах с кван-
товым сопроцессором // Приборы. – 2024. – № 3 (285). – С. 12-20. – EDN TPQGGM.
9. Парамонов Н.Б., Минин И.В. Многоверсионное моделирование в ходе проектирования инфор-
мационных систем // Межотраслевая информационная служба. – 2014. – № 1. – С. 40-44.
10. Chen Liming, Avlzlenlsn Algirdas. Version Programming: A Fault-Tolerance Approach to Reliability
of Software Operation // IEEE Transactions on Software Engineering. – 1985. – Vol. SE-11, No. 12.
11. Martello S. Knapsack problems: Algorithms and computer implementations. – John Wiley & Sons,
New York, NY United States, 1990. – 296 p. – ISBN:978-0-471-92420-3.
12. Суминов К.А. Метод формирования многоверсионных библиотек функциональных программ
бортовых вычислительных систем робототехнических комплексов // Приборы. – 2025. – № 1
(295). – С. 7-13.
13. Bocharov N., Slavin O., Suminov K., Paramonov N. Modeling of Technical Vision System of Robots
Based on Elbrus Microprocessors // IEEE Proccedings of 5th International Conference on Control Systems,
Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk, 08–10 ноября
2023 года. Vol. 5. – Lipetsk: Lipetsk State Technical University, 2023. – P. 572-577. – DOI:
10.1109/SUMMA57301.2022.9974116. – EDN FMKKQO.
14. Pérez L. et al. Robot guidance using machine vision techniques in industrial environments: A comparative
review // Sensors. – 2016. – Vol. 16, No. 3. – P. 335.
15. Фельдман В.М., Волин В.С., Черепанов С.А. [и др.]. Решение задач робототехники на перспек-
тивных отечественных вычислителях // Приборы. – 2021. – № 5 (251). – С. 28-35. – EDN
EKDPQG.
16. Gasparetto A. et al. Path planning and trajectory planning algorithms: A general overview // Motion
and operation planning of robotic systems: Background and practical approaches. – 2015. – P. 3-27.
17. Бычков И.Н., Чучко П.А. Решения для средств вычислительной техники на основе процессора
"Эльбрус-8СВ" // Наноиндустрия. – 2019. – № S(89). – С. 57-59. – DOI:
10.22184/NanoRus.2019.12.89.57.59. – EDN EEYLIT.
18. Бычков И.Н., Лобанов И.Н., Молчанов И.А. Вычислительная техника на основе аппаратно-
программной платформы "Эльбрус" для перспективных информационных систем // Приборы.
– 2018. – № 8 (218). – С. 14-20. – EDN YQWZGX.
19. Ким А.К., Перекатов В.И., Сахин Ю.Х. Развитие и реализация архитектуры вычислительных
комплексов серии "Эльбрус" для решения задач ракетно-космической обороны // Вопросы ра-
диоэлектроники. – 2010. – Т. 3, № 3. – С. 5-17. – EDN NZGZMX.
20. Ким А.К., Волконский В.Ю., Груздов Ф.А. [и др.]. Микропроцессорные вычислительные ком-
плексы с архитектурой "Эльбрус" и их программное обеспечение // Вопросы радиоэлектрони-
ки. – 2009. – Т. 4, № 3. – С. 5-37.
21. Руководство по эффективному программированию на платформе «Эльбрус». – URL:
http://www.mcst.ru/elbrus_prog электронный ресурс (дата обращения 12.12.2024).