SOLUTION OF THE PROBLEMS OF DESIGN DECISIONS SEARCH AND OPTIMIZATION ON THE BASIS OF A HYBRID APPROACH

Abstract

The integrated approaches to solving optimization problems of computer-aided design of digital electronic computing equipment circuits are discuss. The relevance and importance of developing new effective methods for solving such problems is emphasized. The important direction in the development of optimization methods is the development of hybrid methods and approaches that combine the merits of various methods of computational intelligence is noted. It has been suggested that hybridization allows one to achieve a “synergistic effect” when the advantages of individual methods are mutually enhanced. The definition of mixed artificial systems and the conditional classification of hybrid systems are given. Relationships and possibilities of mutual use of the theory of evolutionary design and multi-agent systems are considered. A hybrid approach to solving optimization problems based on a combination of evolutionary search methods, fuzzy control methods and possibilities of parallel organization of the computational process is proposed. A modified migration operator for the exchange of information between decision populations in the process of performing parallel computations is proposed. The structure of the parallel hybrid algorithm has been developed. The island and buffer models of a parallel genetic algorithm to organize a parallel computing process is proposed to use. To improve the quality of the results obtained, a fuzzy logic controller in the evolution contour of expert information, which regulates the values of the parameters of the evolution process is included. A block diagram of the developed hybrid algorithm is presented. A software application is developed, a description of the architecture of the software application is given. The features of the software implementation of the proposed hybrid algorithm are considered. A brief description of the performed computational experiments confirming the effectiveness of the proposed method is presented.

Authors

References

1. Рассел С., Норвиг П. Искусственный интеллект: Современный подход. – М.: Издатель-
ский дом «Вильямс», 2006.
2. Luger G.F. Artificial Intelligence. Structures and Strategies for Complex Problem Solving. –
6th ed. Addison Wesley, Boston MA, 2009.
3. Кныш Д.С., Курейчик В.М. Параллельные генетические алгоритмы: Проблемы, обзор и
состояние // Известия РАН. Теория и системы управления. – 2010. – № 4. – C. 72-82.
4. Хакен Г. Синергетика. – М.: Мир, 1980. – 405 с.
5. Gladkov L.A., Gladkova N.V., Legebokov A.A. Organization of Knowledge Management Based
on Hybrid Intelligent Methods // Software Engineering in Intelligent Systems. Proceedings of the
4th Computer Science On-line Conference 2015 (CSOC 2015). Vol 3: Software Engineering in
Intelligent Systems. – Springer International Publishing, Switzerland, 2015. – P. 107-113.
6. Хакен Г. Тайны природы. Синергетика: учение о взаимодействии. – Ижевск: ИКИ, 2003.
– 320 с.
7. Гладков Л.А., Курейчик В.М., Курейчик В.В., Сороколетов П.В. Биоинспирированные
методы в оптимизации. – М.: Физматлит, 2009. – 384 с.
8. Прангишвили И.В. Системный подход и общесистемные закономерности. – М.:
СИНТЕГ, 2000. – 528 с.
9. Борисов В.В., Круглов В.В., Федулов А.С. Нечеткие модели и сети. – М.: Горячая линия –
Телеком, 2007. – 284 с.
10. Ярушкина Н.Г. Основы теории нечетких и гибридных систем. – М.: Финансы и стати-
стика, 2004. – 320 с.
11. Herrera F., Lozano M. Fuzzy Adaptive Genetic Algorithms: design, taxonomy, and future
directions // Soft Computing 7. – Springer-Verlag, 2003. – P. 545-562.
12. Gladkov L.A., Gladkova N.V., Gromov S.A. Hybrid Fuzzy Algorithm for Solving Operational
Production Planning Problems // Advances in Intelligent Systems and Computing. Vol.573.
Proceedings of the 6th Computer Science On-line Conference 2017 (CSOC 2017). Vol. 1: Artificial
Intelligence Trends in Intelligent Systems. – Springer International Publishing, Switzerland,
2017. – P. 444-456.
13. Тарасов В.Б. От многоагентных систем к интеллектуальным организациям: философия,
психология, информатика. – М.: Эдиториал УРСС, 2002. – 352 с.
14. Назаров В.И. Эволюция не по Дарвину: смена эволюционной модели. – М.: КомКнига,
2005. – 520 c.
15. Holland J.H. Adaptation in Natural and Artificial Systems. – Ann Arbor: The University of
Michigan Press, 1975.
16. Alba E., Tomassini M. Parallelism and evolutionary algorithms // IEEE T. Evolut. Comput.
– 2002. – Vol. 6. – P. 443-461
17. Zhongyang X., Zhang Y., Zhang L., Niu S. A parallel classification algorithm based on hybrid
genetic algorithm // Proc. of the 6th World Congress on Intelligent Control and Automation,
Dalian, China. 2006. – P. 3237-3240
18. Гладков Л.А. Решение задач поиска и оптимизации решений на основе нечетких генети-
ческих алгоритмов и многоагентных подходов // Известия ТРТУ. – 2006. – № 8 (63).
– C. 83-88.
19. Гладков Л.А. О некоторых подходах к построению гибридных интеллектуальных систем
для решения графовых задач // Новости искусственного интеллекта. – 2000. – № 3.
– С. 71-90.
20. Гладков Л.А., Лейба С.Н., Тарасов В.Б. Разработка и программная реализация гибридно-
го алгоритма решения оптимизационных задач автоматизированного проектирования //
Программные продукты и системы. – 2018. – Т. 31, № 3. – С. 569-580.

Скачивания

Published:

2019-11-13

Issue:

Section:

SECTION III. DESIGN AUTOMATION

Keywords:

Optimization design problems, multi-agent system, evolutionary design, fuzzy control, parallel computing, fuzzy logic controller