STUDY AND DESIGN OF AUTOMATED TOOLS FOR SIMULATION OF SOFT ERRORS IN MODERN COMBINATIONAL CMOS IC
Abstract
Circuits are becoming more sensitive to the effects of heavy charged particles due to changes in design technologies: shrinking of features size, supply voltages, an increase denser chips and clock frequencies. The widespread use of modern CMOS integrated circuits in the cosmic, military industry, scientific research facilities, and medical therapy installations under conditions of radiation exposure, where failures are unacceptable, is relevant. But it should also be borne in mind that soft errors are possible in electronic systems at sea level as a result of exposure to neutrons and alpha particles, which makes the use radiation hardening measures of terrestrial applications also necessary. Today, methods being developed to ensure failure tolerance at the circuit-level. To evaluate methods for design radiation hardened integrated circuits, fast and accurate methods of automated simulation of soft errors are needed. But there are no automated tools for simulating of high-energy particles in commercial CAD systems. For 45nm technologies and below the majority of observed soft errors will occur in combinational logic. In this paper, the method of automated simulation of single event transients is proposed. The developed method is comparing with existing analogs. The paper shows the application of the method on a large set of combinational cells.
References
2. Зольников К.В. Модель радиационных эффектов воздействия тяжелых заряженных час-
тиц в КМОП – элементах микросхем // Программные продукты и системы. – 2011.
– № 3. – С. 17-21.
3. Selahattin S. Soft Error Mechanisms, Modeling and Mitigation. – N.Y.: Springer, 2016. – 105 p.
4. Данилов И.А., Василегин Б.В., Осипенко П.Н. Метод автоматизированного схемотехни-
ческого моделирования эффектов воздействия тяжелых заряженных частиц на совре-
менные КМОП ИМС // Вопросы атомной науки и техники. Серия: физика радиационно-
го воздействия на радиоэлектронную аппаратуру. – 2011. – № 4. – С. 13-16.
5. Ding G., Chen S. Full-TCAD Device Simulation of CMOS Circuits with a Novel Half-Implicit
Solver // 2012 International Conference on Simulation of Semiconductor Processes and Devices
(SISPAD), Denver, USA, 2012. – P. 272-275.
6. Hubert G., Artola L. Single-Event Transient Modeling in a 65-nmBulk CMOS Technology
Based on Multi-Physical Approach and Electrical Simulations // IEEE Transactions on Nuclear
Science. – 2013. – Vol.60, No. 6. – P. 4421-4429.
7. Hubert G. [and others]. Operational SER Calculations on the SAC-C Orbit Using the Multy-
Scales Single Event Phenomena Predictive Platform (MUSCA SEP3) // IEEE Transactions on
Nuclear Science. – 2009. – Vol. 56, No. 6. – P. 3032-3042.
8. Andjelkovic M., Ilic A., Stamenkovic Z., Kraemer R. An Overview of the Modeling and Simulation
of the Single Event Transients at the Circuit Level // International conference on microelectronics
(MIEL 2017), Serbia. 2017. – P. 35-44.
9. Смолин А.А. и др. Схемотехническое моделирование одиночных эффектов при воздей-
ствии тяжелых заряженных частиц в КМОП СБИС с суб-100-нм проектными нормами /
// Известия вузов. Электроника. – 2017. – № 5. – С. 447-459.
10. Messenger G.C. Collection of charge on junction nodes from ion tracks // IEEE Transactions
on nuclear science. – 1982. – No. 6. – P. 2024-2031.
11. Amusan O.A. [and others]. Single Event Upsets in Deep – Submicrometer Technologies Due
to Charge Sharing // IEEE Transactions on device and materials reliability. – 2008. – No. 3.
– P. 582-589.
12. Zhou Q., Mohanram K. Gate Sizing to Radiation Harden Combinational Logic // IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems. – 2006. – Vol. 25,
No. 1. – P. 155-166.
13. Kauppila J.S. [and others]. A Bias – Dependent Single – Event Compact Model Implemented
Into BSIM4 and a 90nm CMOS Process Design Kit // IEEE Transactions on nuclear science.
– 2009, No. 6. – P. 3152-3157.
14. Black D.A. [and others]. Modeling of Single Event Transients With Dual Double – Exponential
Current Sources: Implication for Logic Cell Characterization // IEEE Transactions on nuclear
science. – 2015. – No. 4. – P. 1540-1549.
15. Петросянц К.О., Харитонов И.А., Орехов Е.В., Самбурский Л.М. Определение парамет-
ров электрической подсхемы, подключаемой к SPICE модели МОП транзистора для
учета влияния ОЯЧ // 13-я Российская научно-техническая конференция «Электроника,
микро- и наноэлектроника»: Сб. научны трудов. – М: МИФИ, 2011. – С.8-15.
16. Тельпухов Д.В., Деменева А.И. Разработка программных средств моделирования эффек-
тов воздействия тяжелых заряженных частиц на современные КМОП ИМС // Матер. на-
учно – практической конференции «Актуальные проблемы информатизации в науке и
образовании - 2018». – 2018. – С. 88-93.
17. Balbekov A., Gorbunov M. Estimation Technique for SET-tolerance of Combinational ICs //
International Conference on Micro-and Nano-Electronics. – 2014. – DOI:
10.13140/2.1.3590.8804. – URL: https://www.researchgate.net/publication/267925908_ Estimation_
Technique_for_SET-tolerance_of_Combinational_ICs (дата обращения 04.08.2019).
18. Danilov I.A., Gorbunov M.S., Antonov A.A. SET Tolerance of 65 nm CMOS Majority Voters: A
Comparative Study // IEEE Transactions on nuclear science. – 2014. – No. 4. – P. 1597-1602.
19. Andjelkovic M., Jagdhold U., Krstic M., Kraemer R. 2D TCAD Simulations of Single Event
Transients in 250nm Bulk CMOS Technology // Reliability by Design; 9.ITG/GMM/GISymposium,
Cottbus, Germany, 2017. – P. 90-96.
20. Andjelkovic M., Krstic M., Kraemer R. Comparison of the SET sensitivity of standard logic
gates designed in 130nm CMOS technology // 2017 IEEE 30th International conference on
microelectronics (MIEL). – 2017. – P. 217-220.