ANALYSIS OF SIGNAL VOLTAGE AMPLITUDE TRANSMISSION IN CROSSBAR STRUCTURE OF NONVOLATILE MEMORY BASED ON MEMRISTORS
Abstract
The article presents a new algorithm for modeling the transmission and non-linear composition of signals without using the principle of superposition in a fragment of a cross-bar system based on Kirchhoff's laws. The algorithm is necessary to improve the structure and existing design technology of non-volatile memory using a circuit solutions as part of the concepts of technical nanoelectronics. In this model, it is proposed to apply the theory of the electronic wave circuit to adjust the parameters of two-electrode devices and metal wires, aimed at minimizing the power consumption and heat dissipation, increasing the clock frequency and efficiency of digital integrated circuits without drastically changing the existing production technology. The methods of equivalent sinusoids and circuits, complex amplitudes and harmonic linearization are used for the analytical solution of the electric state equations and the analysis of the amplitude-dependent summation of signal effects in system due to the multifactor dependence of the cross-bar system parameters. The obtained analytical relations in the monochromatic approximation allow to estimate the inertial and nonlinear properties of the cross-bar system, specified by all of its elements that are functioning correlated in the general electromagnetic field. It is shown that the voltage waves at the terminals of a separate memristor will be "distorted" by the connecting lines and will not correspond to the initial signal due to the transformation of the stored signal and the phenomenon of controlled interference in the fragments of resistive memory.
References
nanoelectronics elements on the basis of titanium dioxide], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 10 (183), pp. 27-40.
2. Smirnov V.A. Primenenie zondovoy nanolitografii dlya formirovaniya elementov nanoelektroniki
metodom lokal'nogo anodnogo okisleniya plenki titana [The application of scanning probe nanolithography
for the formation of the elements of nanoelectronics with the method of local anodic
oxidation film of titanium], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2014, No. 9 (158), pp. 15-24.
3. Smirnov V.A., Tominov R.V., Avilov V.I., Alyab'eva N.I., Vakulov Z.E., Zamburg E.G.,
KHakhulin D.A., Ageev O.A. Issledovanie memristornogo effekta v nanokristallicheskikh
plenkakh ZnO [Research of the memristor effect in ZnO nanocrystalline films], Fizika i
tekhnika poluprovodnikov [Physics and technology of semiconductors], 2019, Vol. 53, No. 1,
pp. 77-82.
4. Ageev O.A., Blinov Y.F., Ilina M.V., Ilin O.I., Smirnov V.A. Modeling and experimental study
of resistive switching in vertically aligned carbon nanotubes, Journal of Physics: Conference
Series, 2016, Vol. 741, No. 1, pp. 012168.
5. Il'ina M.V., Il'in O.I., Blinov YU.F., Smirnov V.A., Ageev O.A. Neravnomernaya uprugaya
deformatsiya i memristornyy effekt v orientirovannykh uglerodnykh nanotrubkakh [Uneven
elastic deformation and memristor effect in oriented carbon nanotubes], Zhurnal tekhnicheskoy
fiziki [Journal of technical physics], 2018, Vol. 88, No. 11, pp. 1726-1733.
6. Smirnov V.A. Nanolithography by local anodic oxidation of thin titanium film, In book:
Piezoelectrics and Nanomaterials: Fundamentals, Developments and Applications, 2015,
pp. 85-103.
7. Tominov R.V., Zamburg E.G., Khakhulin D.A., Klimin V.S., Smirnov V.A., Chu Y.H., Ageev
O.A. Investigation of resistive switching of ZnxTiyHfzOi nanocomposite for rram elements
manufacturing, Journal of Physics: Conference Series, 2017, Vol. 917, pp. 032023.
8. Shandyba N.A., Panchenko I.V., Tominov R.V., Smirnov V.A., Pelipenko M.I., Zamburg E.G.,
Chu Y.H. Size effect on memristive properties of nanocrystalline ZnO film for resistive synaptic
devices, Journal of Physics: Conference Series, 2018, pp. 081036.
9. Avilov V.I., Ageev O.A., Kolomiytsev A.S., Konoplev B.G., Smirnov V.A., Tsukanova O.G.
Formirovanie i issledovanie matritsy memristorov na osnove oksida titana metodami zondovoy
nanotekhnologii [The formation and study of the memristor matrix based on titanium oxide by
scanning probe nanotechnology], Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [Proceedings
of Universities. Electronics], 2014, No. 2 (106), pp. 50-57.
10. Avilov V.I., Smirnov V.A., Sharapov N.A. Razmernyy effekt v memristornykh nanostrukturakh
na osnove oksida titana dlya sozdaniya elementov sistem iskusstvennogo intellekta i
sinaptroniki [Size effect in the nanostructure of the memristor based on titanium oxide to create
the elements of artificial intelligence systems and sentronik], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2018, No. 2 (196), pp. 34-46.
11. Avilov V.I., Polupanov N.V., Tominov R.V., Smirnov V.A., Ageev O.A. Scanning probe nanolithography
of resistive memory element based on titanium oxide memristor structures, IOP
Conference Series: Materials Science and Engineering, 2017, pp. 012001.
12. Ageev O.A., Blinov Y.F., Il'ina M.V., Konoplev B.G., Smirnov V.A. Resistive switching of vertically
aligned carbon nanotubes for advanced nanoelectronic devices, In book: Intelligent
Nanomaterials: Second Edition, 2016, pp. 361-394.
13. Bharathwaj Muthuswamy, Santo Banerjee. Introduction to Nonlinear Circuits and Networks.
Springer, 2017.
14. Voloshchenko P.Yu., Voloshchenko Yu.P. Osnovy teorii tsepey: odnomernaya nelineynaya
elektricheskaya i elektronnaya volnovaya tsepi: ucheb. posobie dlya akademicheskogo
bakalavriata [Fundamentals of circuit theory: one-dimensional nonlinear electric and electronic
wave circuits: a textbook for academic undergraduate courses]. Moscow: Izd-vo Yurayt, 2016,
101 p.
15. Voloshchenko P.Yu., Voloshchenko Yu.P. Modelirovanie nelineynykh elektricheskikh
protsessov v elementakh elektronnoy volnovoy tsepi: ucheb. posobie [Modeling of nonlinear
electrical processes in elements of an electronic wave chain: a tutorial]. Rostov-on-Don; Taganrog:
Izd-vo YuFU, 2018, 116 p.
16. Voloshchenko P.Yu., Voloshchenko Yu.P. Modelirovanie elektronnykh komponentov
integral'nykh skhem metodami teorii elektricheskikh tsepey: ucheb. posobie [Modeling of
electronic components of integrated circuits by methods of electric circuit theory: tutorial].
Rostov-on-Don; Taganrog: Izd-vo YuFU, 2017, 111 p.
17. Voloshchenko P.Yu., Voloshchenko Yu.P. Teoriya energeticheskikh protsessov SVCh v
elektronnoy volnovoy tsepi [Theory of microwave energy processes in an electronic wave
chain]. Rostov-on-Don; Taganrog: Izd-vo YuFU, 2017, 102 p.
18. Voloshchenko P.Yu., Voloshchenko Yu.P. Elektro- i radiotekhnicheskie modeli tekhnologii
kogerentnoy elektroniki [Electro-and radio-technical models of coherent electronics technology].
Rostov-on-Don; Taganrog: Izd-vo YuFU, 2016, 110 p.
19. Voloshchenko P.Yu., Voloshchenko Yu.P. Osnovy sistemnogo modelirovaniya elektricheskoy
struktury integratsii sverkhbystrodeystvuyushchikh elektronnykh priborov [Fundamentals of
system modeling of the electrical structure of integration of ultra-fast electronic devices]. Rostov-
on-Don; Taganrog: Izd-vo YuFU, 2014, 94 p.
20. Voloshchenko P.Yu., Voloshchenko Yu.P., Mal'kov S.B. Modelirovanie kompozitsii signalov v
odnomernoy elektronnoy tsepi [Modelling of the composition of signals in one-dimensional
electronic circuits], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences],
2015, No. 11 (172), pp. 33-42.
21. Voloshchenko P.Yu., Voloshchenko Yu.P. Analiz transformiruyushchikh svoystv SVCh
struktury kompozitsionnogo materiala kogerentnoy elektroniki [Analysis of the transforming
properties of the microwave structure of the composite material of coherent electronics],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 9
(170), pp. 39-49.
22. Voloshchenko P.Yu., Voloshchenko Yu.P. Metodologiya matematicheskogo modelirovaniya
nelineynykh volnovykh i kolebatel'nykh elektricheskikh protsessov v izdeliyakh kogerentnoy
radio-, mikro- i nanoelektroniki [Methodology for mathematical modeling of nonlinear wave
and oscillatory electrical processes in coherent radio, micro, and nanoelectronics products].
Rostov-on-Don; Taganrog: Izd-vo YuFU, 2013, 109 p.
23. Feynman R., Leyton R., Sends M. Feynmanovskie lektsii po fizike. T. 6. Elektrodinamika [The
Feynman lectures on physics. Vol. 6. Electrodynamics]. Moscow: Mir, 1966, 344 p.
24. Plattsman F., Vol'f P. Volny i vzaimodeystviya v plazme tverdogo tela [Waves and interactions
in solid-state plasma]. Moscow: Mir, 1975, 440 p.