INVESTIGATION OF ECHOINTEGRATION METHOD OF SMALL FISH AND ZOOPLANKTON REMOTE IDENTIFICATION ON THE PRINCIPLES OF NONLINEAR ACOUSTICS

Abstract

The use of sonar to study life in the oceans is an important tool for research in marine biology. The сentral goal of biological oceanography is to understand the mechanisms of regulation of plankton populations. Zooplankton is a key component of food webs. Biological sampling methods were commonly used to measure zooplankton concentrations. These methods are based on sampling zooplankton in nets. Underwater acoustic technologies are one of the most effective tools for detecting and mapping aquatic organisms such as zooplankton. Quantitative measurement of marine zooplankton using sonar equipment requires a detailed knowledge of their scattering properties. In this paper it is proposed to improve the known method of remote identification of small fish and zooplankton, an echo integration method, by using the parametric array, as an active sonar, based on the principles of nonlinear interaction of acoustic waves. These arrays have a wide range of operating frequencies and a narrow beam pattern in the practical absence of a side field. This will improve the efficiency of search and evaluation of zooplankton and small fish accumulations, which is an important economic task. Theoretical prerequisites for the implementation of the echo-integration method using nonlinear hydroacoustics are considered. Assumptions were made about the uniformity of distribution of hydrobionts in the scattering volume, the independence of object location from the directivity axis and a large accumulation of aquatic organisms compared to the beam width of the parametric array. In the expression of determining the echo signal from multiple sources it is proposed to use the beam pattern of the parametric array in spherical coordinates.

Authors

References

1. Zooplankton Methodology Manual (Руководство по методологии зоопланктона), Academic
Press, NY, 2000. Edited by M. Huntley, R. Harris, P. Weibe, J. Lenz, H.R. Skjoldal.
2. Dolganova N.T., Nadtochiy V.V. Costav, sezonnaya i mezhgodovaya dinamika zooplanktona
zaliva Petra Velikogo (YAponskoe more) [Composition, seasonal and interannual dynamics of
zooplankton in Peter the Great Bay (sea of Japan)], Izvestiya TINRO [Izvestiya TINRO], 2015,
Vol. 181, pp. 169-190.
3. Abakumov A.I., Pak S.Ya. Model'nye metody otsenki soderzhaniya fitoplanktona i raschet
pervichnoy produktsii v YAponskom more po sputnikovym dannym [Model evaluation methods
the content of phytoplankton and calculation of primary production in the Japan sea according
to satellite data], Vestnik DVO RAN [Vestnik of Far Eastern Branch of Russian Academy
of Sciences], 2016, No. 4, pp. 78-86.
4. Mokievskiy V.O., Isachenko A.I., Makarov A.V. Primenenie distantsionnykh metodov v
izuchenii donnykh soobshchestv: ucheb.-metod. posobie «Kompleksnye ekologicheskie
issledovaniya shel'fovoy zony» [Application of remote methods in the study of bottom communities:
educational and methodological guide "Integrated environmental studies of the shelf
zone"]. Moscow, MGU im. M.I. Lomonosova, 2015, pp. 80-124.
5. Kuznetsov M.Yu. Gidroakusticheskie metody i sredstva otsenki zapasov ryb i ikh promysla. Ch. 1.
Gidroakusticheskie sredstva i tekhnologii ikh ispol'zovaniya pri provedeni bioresursnykh
issledovaniy TINRO-tsentra [Hydroacoustic methods and tools for assessing fish stocks and their
fisheries. Part 1. Hydroacoustic tools and technologies for their use in conducting bioresource research
at the TINRO center], Izvestiya TINRO [Izvestiya TINRO], 2013, Vol. 172, pp. 20-51.
6. Levin V.A., Aleksanin A.I., Aleksanina M.G. i dr. Razrabotka tekhnologiy sputnikovogo
monitoringa okruzhayushchey sredy po dannym meteorologicheskikh sputnikov [Development
of technologies for satellite environmental monitoring based on meteorological satellite data],
Otkrytoe obrazovanie [Open education], 2010, No. 5, pp. 41-49.
7. Kyung-Ae Park, Ji-Eun Park, Min-Sun Lee, Chang-Keun Kang. Comparison of composite
methods of satellite chlorophyll-a concentration data in the East Sea, Korean J. Remote Sensing,
2012, Vol. 28, Nо. 6, pp. 635-651.
8. Ehrenberg J. Echo counting and echo integration with a sector scanning sonar, Journal of
Sound and Vibration, 1980, Vol. 73, Issue 3, pp. 321-332.
9. Furusawa M. New technologies for quantitative echo sounders, Meeting of Scientific Committee
for Ocean Research, 2000.
10. Balk H. Development of hydroacoustic methods for fish detection in shallow water: Thesis for
the degree of Doctor Scientiarum. Universitetet i Oslo, 2001.
11. Jules S. Jaffe, Peter J.S. Franks and Andrew W. Leising Odnovremennaya vizualizatsiya
raspredeleniya zooplanktona i fitoplanktona [Leasing Simultaneous visualization of zooplankton
and phytoplankton distribution], Oceanography, 1998, Vol. 11, No. 1, pp. 24-29.
12. Holliday D.V. Extracting bio-physical information from acoustic signatures of marine organisms
// Oceanic sound scattering prediction. – Plenum Press, NY, 1977. – P. 619-624.
13. Kang M. Overview of the Applications of Hydroacoustic Methods in South Korea and Fish Abundance
Estimation Methods, Fisheries and aquatic sciences, 2014, Vol. 17 Issue 3, pp. 369-376.
14. Manik H. Acoustic Observation of Zooplankton Using High Frequency Sonar, Indonesian
Journal of Marine Sciences, 2015, Vol. 20 (2). pp. 61-72.
15. Takao Y. and Furusawa M. Dual-beam echo integration method for precise acoustic surveys,
ICES Journal of Marine Science, 1996, Vol. 53, pp. 351-358.
16. Novikov B.K., Rudenko O.V., Timoshenko V.I. Nelineynaya gidroakustika [Nonlinear underwater
acoustics]. Leningrad: Sudostroenie, 1981, 264 p.
17. Novikov B.K., Timoshenko V.I. Parametricheskie antenny v gidrolokatsii [Parametric antennas
in sonar]. Leningrad: Sudostroenie, 1990, 256 p.
18. Hwanga Y., Ahna H., Nguyena D.-N., Kimb W., Moona W. An underwater parametric array
source transducer composed of PZT/thin-polymer composite, Sensors and Actuators A: Physical,
2018, Vol. 279, pp. 601-616.
19. Humphrey V.F. Parametric arrays: laboratory applications in underwater acoustics, 6th European
Conference on Underwater Acoustics, 2002.
20. María Campo-Valera, Miguel Ardid, Dídac D., Tortosa, Ivan Felis, Juan A. Martínez-Mora,
Carlos D. Llorens, Pablo Cervantes. Acoustic Parametric Signal Generation for Underwater
Communication, Sensors (Basel), 2018, Vol. 18 (7), pp. 21-49.

Скачивания

Published:

2020-02-26

Issue:

Section:

SECTION II. MODELING AND ANALYSIS OF DEVICE PARAMETERS

Keywords:

Echo integration, backscattering, parametric array, broadband, beam pattern