STUDY OF THE MODES OF FORMING ZnO: Ga NANOCRYSTALLINE FILMS BY MAGNETRON SPUTTERING

Abstract

The main goal of this work is to study the modes of formation of thin nanocrystalline ZnO: Ga films by direct current magnetron sputtering. The main objective of the study is to obtain thin (~ 300 nm), transparent, conductive films with a resistivity value of less than 5 · 10-3 Ohm · cm, which can be used as contacts for nanostructures of photosensitive elements, as well as studying the technological parameters of magnetron sputtering equipment and metal oxide targets. The morphology of the resulting thin ZnO: Ga films was studied. As a result of the study, it was revealed that the surface of the films consists of individual crystals, united together during the deposition of the material. These crystals have pronounced faces and peaks. It was also revealed that with an increase in the power of a direct current source, the crystals on the film surface increase several times in proportion to the increase in power, and the film thickness increases due to anincrease in the speed of sputtering of the target material on the substrate. Further, the electrical characteristics of the obtained films were investigated and the dependences of the influence of the power (thickness) of the film on the carrier concentration, their mobility, and also resistivity were derived. Thus, it was revealed that with an increase in the film thickness from 320 nm to 340 nm, the mobility of current carriers increases from 3.027 cm2/(V·s) to 3.228 cm2/(V·s), and with an increase in the film thickness from 800 nm to 1200 nm of current carriers increases from 6.511 cm2/(V·s) to 6.547 cm2/(V·s). With an increase in the film thickness from 320 nm to 340 nm, the concentration of current carriers decreases from 1.571·1020 cm– 3 to 1.489·1020 cm– 3, and with an increase in the film thickness from 800 nm to 1200 nm, the concentration of current carriers decreases from 2.481·1020 cm-3 to 1.653·1020 cm-3. As the film thickness increases from 320 nm to 340 nm, the resistivity increases from 1.303·10-2 Ω·cm to 1.38 ·10-2 Ω·cm. and as the film thickness increases from 800 nm to 1200 nm, the resistivity increases from 3.851·10-2 Ω·cm to 5.779·10-2 Ω·cm.

Authors

References

1. Ageev O.A., Konoplev B.G. i dr. Nanotekhnologii v mikroelektronike [Nanotechnology in
Microelectronics]. Moscow: Nauka, 2019, pp. 112-165.
2. Kelly P.J., Arnell R.D. Magnetronnoe raspylenie: obzor poslednikh razrabotok i primeneniy
[Magnetron sputtering: a review of recent developments and applications], Vacuum, 2000,
Vol. 56, pp. 159-172.
3. Klimin V.S., Rezvan A.A., Ageev O.A. Issledovanie primeneniya plazmennykh metodov dlya
formirovaniya polevykh emitterov na osnove uglerodnykh nanorazmernykh struktur [Research
of using plasma methods for formation field emitters based on carbon nanoscale structures],
Journal of Physics: Conference Series, 2018, Vol. 1124, pp. 071020.
4. Tominov R.V., Smirnov V.A., Avilov V.I., Fedotov A.A., Klimin V.S., Chernenko N.E.
Formirovanie memristornykh struktur ZnO metodom skaniruyushchey zondovoy
nanolitografii [Formation ZnO memristor structures by scratching probe nanolithography],
IOP Conf. Series: Materials Science and Engineering, 2018, Vol. 443, pp. 012036.
5. Murdick D.A., Wadley H.N., Zhou X.W. Mekhanizmy kondensatsii para, obogashchennogo
mysh'yakom, na poverkhnosti GaAs (001) [Condensation mechanisms of an arsenic-rich vapor
on GaAs (001) surfaces], Phys. Rev. B, 2007, Vol. 75, pp. 125318.
6. Vakulov Z.E., Ivonin M., Zamburg E.G., Klimin V.S., Volik D.P., Golosov D.A., Zavadskiy
S.M., Dostanko A.P., Miakonkikkh A.V., Klemente I.E., Rudenko K.V., Ageev O.A. Razmernye
effekty v tonkikh plenkakh LiNbO3, poluchennykh metodom impul'snogo lazernogo
napyleniya [Size effects in LiNbO3 thin films fabricated by pulsed laser deposition], Journal
of Physics: Conference Series, 2018, Vol. 1124, pp. 022032.
7. Balakirev S.V., Eremenko M.M., Mikhaylin I.A., Klimin V.S., Solodovnik M.S. Kapel'naya
epitaksiya nanostruktur In/AlGaAs na Asstabilizirovannoy poverkhnosti [Droplet epitaxy of
In/AlGaAs nanostructures on the As-stabilized surface], Journal of Physics: Conference Series,
2018, Vol. 1124, pp. 022018.
8. Tseng A. Poslednie razrabotki v oblasti mikroobrabotki s ispol'zovaniem tekhnologii
sfokusirovannykh ionnykh puchkov [Recent developments in micromilling using focused ion
beam technology], Journal of Micromechanics and Microengineering, 2004, Vol. 14, pp. 15.
9. Han J., Lee H., Min B., Lee S. Prognozirovanie topologii nanomaterialov s ispol'zovaniem
dvumernogo fokusirovannogo ionnogo frezerovaniya s intervalami oblucheniya puchkom
[Prediction of nanopattern topography using two-dimensional focused ion beam milling with
beam irradiation intervals], Microelectronic Engineering, 2010, Vol. 87, pp. 1-9.
10. Klimin V.S., Solodovnik M.S., Lisitsin S.A., Rezvan A.A., Balakirev S.V. Formirovanie
nanorazmernykh struktur na poverkhnosti arsenida galliya pri lokal'nom anodnom okislenii i
plazmokhimicheskom travlenii [Formation of nanoscale structures on the surface of gallium
arsenide by local anodic oxidation and plasma chemical etching], Journal of Physics: Conference
Series, 2018, Vol. 1124, pp. 041024.
11. Adachi S. Svoystva poluprovodnikov gruppy IV, III-V i II-VI [Properties of group-IV, III-V
and II-VI semiconductors]. John Wiley & Son, 2005, 408 p.
12. Cao G. Nanostruktury i nanomaterialy. Sintez, svoystva i primenenie [Nanostructures &
nanomaterials. Synthesis, properties & applications]. Imperial College Press, 2004, 448 p.
13. Aseev A.L. Nanotekhnologii v poluprovodnikovoy elektronike [Nanotechnology in semiconductor
electronics]. Novosibirsk: Izd-vo SO RAN, 2004, 368 p.
14. Jha N.K., Chen D. Proektirovanie nanoelektronnykh skhem design [Nanoelectronic circuit
design]. Springer, 2011, 290 p.
15. Piccin P. et al. Rost metodom molekulyarno-luchevoy epitaksii i elektricheskaya
kharakteristika nanoviskerov GaAs [Growth by molecular beam epitaxy and electrical characterization
of GaAs nanowires], Physica E, 2007, Vol. 37, pp. 134-137.
16. Chernenko N.E., Balakirev S.V., Eremenko M.M., Solodovnik M.S. Mezhfaznoe vzaimodeystvie
v sisteme Ga-As-ZnO v usloviyakh molekulyarno-luchevoy epitaksii [Interfacial interaction in
the Ga-As-ZnO system under molecular beam epitaxy], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2019, No. 2 (204), pp. 184-192.
17. Balakirev S.V., Blinov Yu.F., Solodovnik M.S. Model' nachal'noy stadii gomoepitaksial'nogo
rosta GaAs metodom MLE s uchetom sootnosheniya potokov rostovykh komponent [The
model of the initial stage of GaAs homoepitaxial growth by the MBE method taking into account
the ratio of the fluxes of growth components], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 94-105.
18. Chu C-P., Arafin S., Nie T. Nanorazmernyy rost GaAs na uzorchatykh podlozhkakh Si (111)
metodom molekulyarno-luchevoy epitaksii [Nanoscale Growth of GaAs on Patterned Si (111) Substrates
by Molecular Beam Epitaxy], Crystal Growth & Design, 2014, Vol. 14, pp. 593-598.
19. Gusev E.Yu., Zhityaeva Yu.Yu., Ageev O.A. Vliyanie usloviy PECVD na mekhanicheskoe
napryazhenie plenok kremniya [Effect of PECVD conditions on mechanical stress of silicon
films], Materials Physics and Mechanics, 2018, Vol. 37, No. 1, pp. 67-72.
20. Gusev E.Yu., Zhityaeva Yu.Yu., Kolomiytsev A.S., Gamaleev V.A., Kots I.N., Bykov A.V.
Issledovanie rezhimov zhidkostnogo travleniya zhertvennogo sloya SiO2 dlya formirovaniya
mikromekhanicheskikh struktur na osnove Si*/SiO2/Si [Study of liquid etching modes of a
sacrificial SiO2 layer for the formation of micromechanical structures based on Si*/SiO2/Si],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 2
(163), pp. 236-245.
21. Sze S. Fizika poluprovodnikovykh priborov [Physics of semiconductor devices]. Vol. 1. Moscow:
Mir, 1984, pp. 258-261.
22. Epifanov G.I. Fizika Osnovy mikroelektroniki [Physics Fundamentals of Microelectronics].
Moscow: Sovetskoe radio, 1971, pp. 145-156.

Скачивания

Published:

2020-07-20

Issue:

Section:

SECTION V. NANOTECHNOLOGIES

Keywords:

Thin, transparent, conductive films, magnetron sputtering, ZnO:Ga