OPTIMIZATION OF REMOTE DOPPLER RECEIVER’S PARAMETERS IN SEMI-ACTIVE RADAR SYSTEMS
Abstract
This article discusses the issues of increasing the noise immunity of semi-active radar systems based on the use of transmitters for target illumination using harmonic radiation and remote Doppler receivers in conjunction with a central information processing station. This solution is not only the simplest from the point of view of hardware implementation, but also has such advantages as high speed and increased sensitivity, as well as the ability to search-free spatial and frequency processing of radiation. Of the shortcomings, it should be noted the low secrecy of the functioning of this semi-active radar system. The purpose of the work is to eliminate the indicated drawback by using frequency tuning in the illumination transmitter or when using several spaceseparated illumination transmitters operating according to a given frequency-time scheme in a semi-active radio-location system. In addition, the paper deals with the optimization of the main parameters of portable Doppler receivers of semi-active radar systems. In particular, the paper gives recommendations for reducing the blinding effect of a direct signal to a Doppler receiver and presents a set of measures aimed at increasing the range of action of semi-active radar systems up to forty kilometers. In this paper, we consider the case of operation of a semi-active radiolocation system operating in a limited spatial sector using one remote receiving point. The illumination transmitter, which is usually placed on a high-rise object, generates directional radiation, intended primarily for solving various tasks in the field of telecommunications, for example, providing mobile communications, relaying satellite information, etc. In this system, the illumination transmitter is used in as a signal generator for illumination of air targets
References
kanalov sistem upravleniya oruzhiem [Electronic suppression of information channels of
weapons control systems]. Moscow: Radiotekhnika, 2003, 416 p.
2. Dyatlov A.P., Dyatlov P.A. Radiosistema obnaruzheniya i opredeleniya koordinat tseley s
ispol'zovaniem peredatchika podsveta [Radio system for detecting and determining the coordinates
of targets using a backlight transmitter], Spetsial'naya tekhnika [Special technology],
2016, No. 1, pp. 2-9.
3. Willis N.J., Griffiths H.D. Advances in Bistatic Radar. SciTech Publishing, 2007.
4. Baranov A.A., Bragar' A.P. Vliyanie profilya fazovykh shumov geterodina s pryamym
sintezom na velichinu srednekvadraticheskogo otkloneniya fazovogo shuma [Influence of the
phase noise profile of a heterodyne with direct synthesis on the value of the root-mean-square
deviation of the phase noise], Tr. MNTK «Radiolokatsiya, navigatsiya, svyaz'» [Proceedings of
the IRTC "Radar location, navigation, communication"]. Voronezh: VNIIS, 2007, Vol. 2,
pp. 1394-1390.
5. Petrov A.S., Prilutskiy A.A. Kompensatsiya fazovogo shuma na sinkhronnom detektore [Phase
noise compensation on a synchronous detector], Elektromagnitnye volny i elektronnye sistemy
[Electromagnetic waves and electronic systems], 2009, No. 11, pp. 49-53.
6. Abramyan A.A. Asinkhronnoe detektirovanie i priem impul'snykh radiosignalov [Asynchronous
detection and reception of pulsed radio signals]. Moscow: Sov. Radio, 1966, 296 p.
7. Aptek Yu.E., Gorelov A.I. K voprosu ob izmerenii shumov SVCh generatorov [On the question
of measuring the noise of microwave generators], Voprosy radioelektroniki. Seriya
«Radioizmeritel'naya tekhnika» [Questions of radio electronics, series "Radio measuring
equipment"], 1865, Issue 1, pp. 3-17.
8. IEEE Radar, Sonar and Navigation, 2005, No. 3.
9. Ostrovskiy O.S., Odarenko E.N. Zashchitnye ekrany i poglotiteli elektromagnitnykh voln [Protective
screens and absorbers of electromagnetic waves], FIP PSE [FIP PSE], 2003, Vol. 1,
No. 2, pp. 161-173.
10. Kondrat'ev V.S., Kotov A.F. i dr. Mnogopozitsionnye RTS [Multi-position RTS], Moscow:
Radio i svyaz', 1986, 264 p.
11. IEEE Aerospace and Electronic System Magazine, 2012, No. 10.
12. IEEE Aerospace and Electronic System Magazine, 2012, No. 11.
13. Griffiths H., Baker C. Passive Bistatic Radar, Principles of Modern Radar. Vol. 3: Radar Applications,
ed. by W.L. Melvin, J.A. Scheer. Edison: SciTech Publishing, 2014, pp. 499-541.
14. Willis N.J. Bistatic Radars. 2nd ed. Raleigh: SciTech Publishing, 2005.
15. Bistatic Radar: Principles and Practice, ed. by M. Cherniakov. Chichester: John Willey &
Sons, 2007.
16. Bistatic Radar: Emerging Technology, ed. by M. Cherniakov. Chichester: John Willey & Sons,
2008.
17. Aver'yanov V.Ya. Raznesennye radiolokatsionnye stantsii i sistemy [Spaced apart radar stations
and systems]. Minsk: Nauka i tekhnika, 1978.
18. Malyshkin E.A. Passivnaya radiolokatsiya [Passive radar]. Moscow: Voenizdat, 1961.
19. Okhrimenko A.E. Osnovy obrabotki i peredachi informatsii [Basics of information processing
and transmission]. Minsk: MVIZRU PVO, 1990.
20. Griffiths H. Passive bistatic radar and waveform diversity, Technical Report RTO-EN-SET-
119. NATO Science and Technology Organization, 2009.
21. Howard P.E., Maksimiuk D., Reitsma G. FM radio based bistatic radar, IEEE Proc. On Radar,
Sonar and Navigation, 2005, No. 5, pp. 107-115.
22. Bernaschi M., Di Lallo A., Farina A. et al. Use a graphics processing unit for passive radar
signal and data processing, IEEE AES Magazine, 2012, No. 10, pp. 52-59.
23. Palmer J., Palumbo S., Cao T.-T. V., Howard S. A new illuminator of opportunity bistatic
radar research project at DSTO, Technical Report DSTO-TR-2269. Defense Science and Technology
Organization, Edinburgh, 2009.
24. Richards M.A. Fundamentals of radar signal processing. New York: McGraw Hill, 2005.
25. Fam Khuan Tiep. Eksperimental'nye issledovaniya maketa poluaktivnoy radiolokatsionnoy
sistemy pri ispol'zovanii radioizlucheniy tsifrovogo efirnogo televideniya DVB-T2 [Experimental
studies of a model of a semi-active radar system using radio emissions from digital terrestrial
television DVB-T2], Izvestiya vuzov Rossii. Radioelektronika [Izvestiya Universities of
Russia. Radio electronics], 2014, No. 5, pp. 29-32.