HYBRID ENCRYPTION BASED ON SYMMETRIC AND HOMOMORPHIC CIPHERS
Abstract
The purpose of this work is to develop and research a hybrid encryption algorithm based on the joint application of the symmetric encryption algorithm Kuznyechik and homomorphic encryp-tion (Gentry scheme or BGV scheme). Such an encryption algorithm can be useful in situations with limited computing resources. The point is that with the correct expression of the basic operations of the symmetric encryption algorithm through Boolean functions, it becomes possible on the transmitting side to encrypt the data with a symmetric cipher, and the secret encryption key - with a homomorphic one. In this case, manipulations can be carried out on the receiving side so that the original encrypted message is also encrypted only with a homomorphic cipher. In this case, symmetric encryption is removed, but the information remains inaccessible to the node that pro-cesses it. This property of secrecy makes it possible to carry out resource-intensive operations on a powerful computing node, providing homomorphically encrypted data for a low-resource node for the purpose of their subsequent processing in encrypted form. The article presents the developed hybrid algorithm. As a symmetric encryption algorithm, Kuznyechik encryption algorithm is used, which is part of the GOST R34.12 - 2015 standard. In order to be able to apply homomorphic encryption to data encrypted with the Kuznyechik cipher, the Kuznyechik algorithm S-boxes is presented in a boolean form using the Zhegalkin polynomial. Also, the linear transformation L is presented in the sequence form of performing the simplest operations of addition and multiplication on the transformeddata. The primary modeling of the developed algorithm was carried out on a simplified version of the KuzchyechikS-KN1 algorithm.
References
1. Nozdrunov V. Ob uyazvimostyakh protokola interneta veshchey NB-Fi v novom proektenatsional'nogo standarta [About vulnerabilities of the Internet of Things protocol NB-Fi in thenew draft of the national standard], Ezhegodnaya mezhdunarodnaya nauchno-prakticheskayakonferentsiya «RusKripto’2021» [Annual International scientific and practical Conference"RusCripto’2021"]. Available at: https://www.ruscrypto.ru/resource/archive/rc2021/files/02_nozdrunov.pdf (accessed 07 May 2021).
2. Polikarpov A. Osobennosti vnedreniya SKZI v RTK s BpLA MD [Features of the implementationof SKZI in RTC with UAV MD], Ezhegodnaya mezhdunarodnaya nauchnoprakticheskayakonferentsiya «RusKripto’2021» [Annual International scientific and practicalConference "RusCripto'2021"]. Available at: https://www.ruscrypto.ru/resource/archive/rc2021/files /11_polikarpov.pdf (accessed 07 May 2021).
3. Polegen'ko A. Sposob sopryazheniya setey raznogo urovnya «otkrytosti», organizovannykhrobototekhnicheskimi kompleksami i sistemami [The method of interfacing networks of differentlevels of "openness", organized by robotic complexes and systems], Ezhegodnayamezhdunarodnaya nauchno-prakticheskaya konferentsiya «RusKripto’2021» [Annual Internationalscientific and practical conference "RusKripto ' 2021"]. Available at: https://www.ruscrypto.ru/ resource/archive/rc2021/files/11_polegenko.pdf (accessed 07 May 2021).
4. Zhukov A. Legkovesnaya kriptografiya [Lightweight Cryptography], Voprosy kiberbezopasnosti[Cybersecurity issues], 2015, No. 1 (9), pp. 26-44.
5. Deryabin M.A., Kucherov N.N. Obzor bezopasnykh metodov shifrovaniya dlya oblachnykhvychisleniy [Review of secure encryption methods for cloud computing], Novosti nauki v APK[Science news in the agro-industrial complex], 2019, No. 3 (12), pp. 298-303.
6. Mark A. Will, Ryan K.L. The Cloud Security Ecosystem Chapter 5 - A guide to homomorphicencryption, Technical, Legal, Business and Management Issues, 2015, pp. 101-127. Availableat: https://www.sciencedirect.com/science/article/pii/B9780128015957000057 (accessed 07May 2021).
7. Naehrig M., Lauter K. Can Homomorphic Encryption be Practical?, Proceedings of the 3rdACM Cloud Computing Security Workshop, CCSW 2011, Chicago, USA, 2011, pp. 113-124.
8. Halevi S., Shoup V. Design and implementation of HElib: a homomorphic encryption library.Available at: https://eprint.iacr.org/2020/1481 (accessed 07 May 2021).
9. Garazha A.A., Gerasimov I.Yu., Nikolaev M.V., Chizhov I.V. Ob ispol'zovanii bibliotekpolnost'yu gomomorfnogo shifrovaniya [On the use of fully homomorphic encryption libraries],International Journal of Open Information Tech-nologies, 2021, Vol. 9, No. 3, pp. 11-22.
10. Gentry C. Fully Homomorphic encryption using ideal lattices, Proceedings of 41-th ACMsymposium on theory of computing (STOC). Bethesda, 2009, pp. 169-178.
11. Gentry C., Halevi S., Smart N.P. Better Bootstrapping in Fully Homomorphic Encryption Gentry,Public Key Cryptography – PKC 2012. Vol 7293 – 2012, Springer, pp. 1-16.
12. Arakelov G.G., Gribov A.V., Mikhalev A.V. Prikladnaya gomomorfnaya kriptografiya: primery[Applied homomorphic cryptography: examples], Fundamental'naya i prikladnayamatematika [Fundamental and applied mathematics], 2016, Vol. 21, No. 3, pp. 25-38.
13. Alam S., De D. Analysis of Security Threats in Wireless Sensor Network, International Journalof Wireless & Mobile Networks, 2014, Vol. 6, No. 2, pp. 1-12.
14. Borgohain T., Sanyal S. Survey of Operating Systems for the IoT Environment, InternationalJournal of Advanced Networking and Applications, 2015, Vol. 6, pp. 1-5.
15. Gentry C., Halevi S., Smart N.P. Homomorphic Evaluation of the AES Circuit, Advances inCryptology - CRYPTO 2012. Vol 7417, Springer, pp. 850-867.16. Kriptograficheskaya zashchita informatsii Blochnye shifry – GOST R 34.12-2015 [Cryptographicprotection of information Block ciphers-GOST R 34.12-2015]. Available at:https://www.tc26.ru/standard/gost/GOST R 3412-2015.pdf (accessed 07 May 2021).
17. Babenko L.K., Ishchukova E.A., Tolomanenko E.A. Differentsial'nyy analiz shifra Kuznechik[Differential analysis of the Grasshopper cipher], Izvestiya YuFU. Tekhnicheskie nauki[Izvestiya SFedU. Engineering Sciences], 2017, No. 5 (190), pp. 25-37.
18. Ishchukova E.A., Babenko L.K. Two simplified versions of Kuznyechik cipher (GOST R34.12-2015), Proceedings of the 10h International Conference on Security of Information andNetworks. – SIN '17. New York, NY, USA: ACM, 2017.
19. Brakerski Z., Gentry C., Vaikuntanathan Vinod. Fully homomorphic encryption without bootstrapping,Cryptology ePrint Archive, Report 2011/277, 2011. Available at: https://eprint.iacr.org/2011/277 (accessed 07 May 2021)
20. Babenko L.K., Tolomanenko E.A. Development of algorithms for data transmission in sensornetworks based on fully homomorphic encryption using symmetric Kuznyechik algorithm,Journal of Physics: Conference Series, 2021, Vol. 1812, pp. 246-251.