INTELLIGENT SUBSYSTEM FOR DECISION SUPPORT BASED ON BIOLOGICALLY PLAUSIBLE ALGORITHMS FOR SELF-ORGANIZATION
Abstract
The article discusses the basic concepts and definitions of decision support systems based on self-organization. Decision Support Systems refers to a range of interactive computer systems that help to use data, models, and knowledge to solve semi-structured, unstructured, or unstructured problems. The diagram of the basic structure of the decision support system is shown and described. Three main components of Decision Support Systems are considered, and a case is described when the fourth component of a decision support system - a knowledge-based management system - can be applied. The article offers a description of an intelligent decision support system. Examples of specialized intelligent decision support systems include intelligent marketing decision support systems and medical diagnostics systems, flexible manufacturing systems. The problems associated with making optimal decisions occupy an important place in computer-aided design and require improving methods and means of supporting optimal design processes at various stages. Self-organization algorithms inspired by wildlife are considered. Bioinspired algorithms are a representative class of self-organization algorithms. Bio-inspired computing mimics nature and uses the underlying concepts and behavior of these systems to solve complex problems. The article describes the algorithm for bats. An experimental analysis of the process of applying the self-organization algorithm in decision-making systems is carried out.
References
dlya studentov vysshikh uchebnykh zavedenii, obuchayushchikhsya po napravleniyu
"Informatika i vychislitel'naya tekhnika"; Minobrnauki Rossii, Federal'noe gos. byudzhetnoe
obrazovatel'noe uchrezhdenie vyssh. prof. obrazovaniya "Penzenskaya gos. tekhnologicheskaya
akad." [Modeling. Models of systems and methods of decision-making: a textbook
for students of higher educational institutions studying in the direction of "Informatics
and Computer Engineering"; the Ministry of Education and Science of the Russian Federation,
the Federal State Budgetary Educational Institution of Higher Education. education "Penza
State Technological Academy"]. Penza: PGTA, 2012, 144 s. (Open education system). ISBN
9785989031696.
2. Emel'yanova S.V. Obrabotka informatsii i analiz dannykh. Programmnaya inzheneriya.
Matematicheskoe modelirovanie. Prikladnye aspekty informatiki [Information processing and
data analysis. Software engineering. Mathematical modeling. Applied aspects of computer science].
Moscow: Lenand, 2015, 104 p.
3. Baushev S.V. Udostoveryayushchie avtomatizirovannye informatsionnye sistemy i sredstva.
Vvedenie v teoriyu i praktiku [Certifying automated information systems and tools. Introduction
to theory and practice]. Saint Petersburg: BHV, 2016, 304 p.
4. Ashim Zh.K., Kenzhegulov B.Z. Razrabotka algoritmicheskogo obespecheniya adaptivnykh
sistem podderzhki prinyatiya reshenii v situatsionnykh tsentrakh (DSS) [Development of algorithmic
support for adaptive decision support systems in situational centers (DSS), Aktual'nye
nauchnye issledovaniya v sovremennom mire [Actual scientific research in the modern world],
2020, No. 1-7(57), pp. 21-27.
5. Kureichik V.V., Kureichik V.M., Gladkov L.A., Sorokoletov P.V. Bioinspirirovannye metody v
optimizatsii [Bioinspired methods in optimization]. Moscow: Fizmalit, 2009, 384 p.
6. Mezentsev K.N. Avtomatizirovannye informatsionnye sistemy [Automated information systems].
Moscow: Academia, 2016, 1280 p.
7. Fedorova G.N. Informatsionnye sistemy [Information systems]. Moscow: Academia, 2016,
158 p.
8. Korneev V.V., Gareev A.F., Vasyutin S.V., Raikh V.V. Bazy dannykh. Intellektual'naya
obrabotka informatsii [Databases. Intellectual information processing]. Moscow: Izd-vo
«Nolidzh», 2000, 352 p.
9. Kureichik V.V., Kureichik V.M., Gladkov L.A., Sorokoletov P.V. Bioinspirirovannye metody v
optimizatsii: ucheb. posobie [Bioinspired methods in optimization: a textbook]. Moscow:
Fizmalit, 2009.
10. Kureichik V.V., Zaporozhets D.Yu. Roevoi algoritm v zadachakh optimizatsii [Swarm algorithm
in optimization problems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2010, No. 7 (108), pp. 28-32.
11. Bova V.V., Lezhebokov A.A., Gladkov L.A. Problem-oriented algorithms of solutions search based
on the methods of swarm intelligence, World Applied Sciences Journal, 2013, Vol. 27 (9),
pp. 1201-1205.
12. Zaruba D., Zaporozhets D., Kureichik V. VLSI placement problem based on ant colony optimization
algorithm, Advances in Intelligent Systems and Computing, 2016, Vol. 464, pp. 127-133.
13. Kureichik V., Kureichik V., Bova V. Placement of VLSI fragments based on a multilayered
approach, Advances in Intelligent Systems and Computing, 2016, Vol. 464, pp. 181-190.
14. Kureichik V.V., Zaruba D.V. The bioinspired algorithm of electronic computing equipment
schemes elements placement, Advances in Intelligent Systems and Computing, 2015, Vol. 347,
pp. 51-58.
15. Kuliev E.V., Lezhebokov A.A., Kravchenko Yu.A. Roevoi algoritm poiskovoi optimizatsii na
osnove modelirovaniya povedeniya letuchikh myshei [Swarm search engine optimization algorithm
based on bat behavior modeling], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2016, No. 7 (180), pp. 53-62.
16. Kursitys I., Kravchenko Y., Kuliev E., Natskevich A. A bioinspired algorithm for improving the
effectiveness of knowledge processing, Advances in Intelligent Systems and Computing, 2021,
Vol. 1197 AISC, pp. 1491-1498.
17. Kuliev E., Zaporozhets D., Kravchenko Y., Kursitys I. A combined bioinspired algorithm for
big data processing, Advances in Intelligent Systems and Computing, 2021, Vol. 1197 AISC,
pp. 842-849.
18. Lezhebokov A.A., Kuliev E.V. Tekhnologii vizualizatsii dlya prikladnykh zadach
intellektual'nogo analiza dannykh [Visualization technology for applications of data mining],
Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN [Izvestiya Kabardino-Balkar scientific
centre of the RAS], 2019, No. 4 (90), pp. 14-23.
19. Kuliev E.V., Kravchenko Yu.A., Loginov O.A., Zaporozhets D.Yu. Metod intellektual'nogo
prinyatiya effektivnykh reshenii na osnove bioinspirirovannogo podkhoda [The method of intellectual
making effective decisions based on a bioinspired approach], Izvestiya Kabardino-
Balkarskogo nauchnogo tsentra RAN [Izvestiya Kabardino-Balkar scientific centre of the
RAS], 2017. No. 6-2 (80), pp. 162-169.
20. Kureichik V., Kuliev E., Zaporozhets D., Kravchenko Y. Combined algorithm for decision
making, 11th IEEE International Conference on Application of Information and Communication
Technologies, AICT 2017 - Proceedings. 11. 2019.