STUDY OF RETRANSMISSION SCHEMES IN WIRELESS SENSOR NETWORKS
Abstract
Wireless sensor networks (WSNs) are being actively implemented in various systems for remote observation and monitoring of distributed objects. WSNs have a number of undoubted advantages: flexibility, efficiency, relative cheapness, and the possibility of rapid deployment. However, the exchange of information and data is carried out in the WSN using wireless communication channels, which are subject to inevitable interference and noise, which leads to transmission errors and even to the loss of transmitted data packets. Another challenge, not fully resolved, is the uneven distribution of consumed energy within the WSN in the face of stringent requirements for energy sources. Currently, there are two most widely used retransmission schemes in the loss of transmitted data, namely, hop-by-hop and end-to-end. Most of the well-known studies devoted to the issues of reliable data transmission in WSN using these schemes have been carried out experimentally. In addition, there are still no analytical methods for evaluating various reliable transport solutions, which complicates the analysis of the proposed WSN. Therefore, the aim of the proposed work is the development of analytical methods and algorithms for studying the operating characteristics of the signal relaying circuits in the WSN. Analytical methods are proposed for evaluating retransmission schemes in the WSN, based on a relatively new theoretical basis - the network calculus for packet-switched networks, which is a tool for determining the size of the network. First, traffic, service and energy cost models are introduced. Based on these models and network calculations, the maximum packet transmission delay and energy efficiency of the two main types of retransmission schemes: hop-by-hop and end-to-end retransmission, are analytically estimated. According to the results of the experiment, the maximum latency and the maximum power consumption of these two schemes are compared in several scenarios. In addition, the analytically calculated maximum delay is compared with the simulation results. With the proposed method, a suitable retransmission scheme can be selected based on the various requirements and constraints to be set.
References
Theoretical Aspects of Distributed Computing in Sensor Networks. Monographs in Theoretical
Computer Science. An EATCS Series. Springer, Berlin, Heidelberg, 2011, pp. 835-863.
2. Akyildiz I.F., Su W., Sankarasubramaniam Y., Cayirci E. Wireless Sensor Networks: a Survey,
Computer Networks, 2002, Vol. 38, No. 4, pp. 393-422.
3. L’vov A.A., Klenov D.V., Kuzin S.A., Svetlov M.S., L’vov P.A. Radar-Based Wireless Sensor
Network for Distributed Measurement Systems, Proc. of the Int. Conf. on Systems of Signal
Synchronization, Generating and Processing in Telecommunications. Minsk, Belarus, 2018,
pp. 1-6. DOI: 10.1109/SYNCHROINFO.2018.8457040/.
4. L’vov A.A., L’vov P.A., Svetlov M.S., Kuzin S.A. Raspredelyonnaya sistema datchikov dlya
avioniki, upravlyaemaya po besprovodnomu kanalu [Distributed sensor system for avionics,
wirelessly controlled], Nadezhnost’ i kachestvo [Re iabi ity and Qua ity]: TRudy’ Mezhdunar. Symp.
[Proc. of Int. Symp.]. Penza: PSU, 2017, Vol. 1, pp. 100-103.
5. Klenov D.V., L'vov A.A., L'vov P.A., Kuzin S.A., Svetlov M.S. Raspredelennaya sistema
datchikov dlya upravleniya na osnove besprovodnogo radiokanala svyazi [Distributed sensor
system for control based on wireless radio communication channel], Sistemnyy sintez iprikladnaya sinergetika: Sb. tr. VIII Vseros. nauch. konf. [System synthesis and Applied
Synergetics: Proceedings of the VIII All-Russian Scientific Conference]. Rostov-on-Don; Taganrog:
Izd-vo YuFU, 2017, pp. 306-313.
6. Kuzin S.A., Sokolov D.N., Ivzhenko S.P., Umnova E.G., Pchelintseva E.G., Frolova N.B.
Model' besprovodnoy sensornoy seti povyshennoy proizvoditel'nosti i nadezhnosti [A model
of a wireless sensor network of increased performance and reliability], Problemy upravleniya,
obrabotki i peredachi informatsii: Sb. tr. VI Mezhdunar. nauch. konf. [Problems of control,
processing and transmission of information: Proceedings of the VI International Scientific
C nference]. Sarat v: OOO SOP «L di», 2019, pp. 495-502.
7. Klenov D.V., L'vov A.A., L'vov P.A., Svetlov M.S., Svetlova M.K. Informatsionnyy kanal
povyshennoy pomekhoustoychivosti v raspredelennykh besprovodnykh bortovykh sistemakh
[Information channel of increased noise immunity in distributed wireless onboard systems],
Sistemnyy sintez i prikladnaya sinergetika: Sb. tr. VIII Vseros. nauch. konf. [System synthesis
and applied synergetics: Proceedings of the VIII All-Russian Scientific Conference]. Rostovon-
Don; Taganrog: Izd-vo YuFU, 2017, pp. 314-321.
8. L'vov A.A., Kuzin S.A., Svetlov M.S., L'vov P.A. Modelirovanie raspredelennoy sistemy
datchikov davleniya na osnove besprovodnogo radiokanala svyazi [Modeling a distributed system
of pressure sensors based on a wireless radio communication channel], Virtual'noe
modelirovanie, prototipirovanie i promyshlennyy dizayn: Mater. V Mezhdunar. nauch.-prakt.
konf. [Virtual modeling, prototyping and industrial design: materials of the V International
scientific-practical conference]: in 3 vol. Vol. 1. Tambov: Izd. tsentr «TGTU», 2018, Issue 5,
pp. 54-60.
9. Kuzin S.A., Al'-Tai O.D.M., Belyanskaya I.A. Model'nye issledovaniya energoeffektivnoy
peredachi signalov dannykh v besprovodnoy sensornoy seti [Model studies of energy-efficient
transmission of data signals in a wireless sensor network], Problemy upravleniya, obrabotki i
peredachi informatsii: Sb. tr. VI Mezhdunar. nauch. konf. [Problems of management, processing
and transmission of information: Proceedings of the VI International Scientific Conference].
Saratov: OOO SOP «L di», 2019, pp. 503-513.
10. Alalvan A.R.D., L'vov P.A., Svetlov M.S., L'vov A.A., Mishchenko D.A., Nikiforov A.A.
Problemy obespecheniya nadezhnosti besprovodnykh setey datchikov [Problems of ensuring
the reliability of wireless sensor networks], Sistemnyy sintez i prikladnaya sinergetika: Sb. tr.
X Vseros. nauch. konf. [System synthesis and Applied Synergetics: Proceedings of the X All-
Russian Scientific Conference]. Rostov-on-Don; Taganrog: Izd-vo YuFU, 2021, pp. 273-280.
11. J., Mukherjee B., Ghosal D. Wireless Sensor Network Survey, Computer Networks, 2008,
Vol. 52, pp. 2292-2330.
12. Prodanovic R., Rancic D., Vulic I., Zoric N., Bogicevic D., Ostojic G., Sarang S., Stankovski S.
Wireless Sensor Network in Agriculture: Model of Cyber Security, Sensors, 2020, Vol. 20
(6747), pp. 1-22. DOI: 10.3390/s20236747.
13. Muduli L., Mishra D.P., Jana P.K. Application of wireless sensor network for environmental
monitoring in underground coal mines: A systematic review, Journal of Network and Computer
Applications, 2018, Vol. 106, pp. 48-67.
14. Culler D., Estrin D., Srivastava M. Overview of Sensor Networks, IEEE Computer, 2004,
Vol. 37, No. 8, pp. 41-49.
15. Park S.J., Vedantham R., Sivakumar R., Akyildiz I.F. A Scalable Approach for Reliable Downstream
Data Delivery in Wireless Sensor Networks, Proc. of the 5th ACM Int. Symp. on Mobile ad
hoc Networking and Computing, 2004, pp. 78-89.
16. Wan C.Y., Campbell A.T., Krishnamurthy L. PSFQ: a Reliable Transport Protocol for Wireless
Sensor Networks, Proc. of the 1st ACM Int. Workshop on Wireless Sensor Networks and Applications,
2002, pp. 1-11.
17. Pai H., Sung J., Han Y.S. Adaptive Retransmission for Distributed Detection in Wireless Sensor
Networks, IEEE Int. Conf.e on Sensor Networks, Ubiquitous, and Trustworthy Computing
(SUTC’06), 2006, pp. 2-7.
18. Boudec J., Thiran P. Network Calculus: A Theory of Deterministic Queuing Systems for the
Internet. Springer, LNCS 2050, 2004.
19. Schmitt J.B., Roedig U. Sensor Network Calculus – a Framework for Worst Case Analysis,
Proc. IEEE/ACM Int. Conf. on Distributed Computing in Sensor Systems (DCOSS’05), 2005,
pp. 141-154.
20. Koubaa A., Alves M., Tovar E. Modeling and Worst-case Dimensioning of Cluster-tree Wireless
Sensor networks, Proc. 27th IEEE Int. Real-time Systems Symp. (RTSS’06), 2006, pp. 412-421.
21. Roedig U., Gollan N., Schmitt J.B. Validating the Sensor Network Calculus by Simulations,
Proc. 2nd Performance Control in Wireless Sensor Networks Workshop at the 2007 WICON
Conf., 2007, Article No. 34, pp. 1-8.
22. Liu B., Ren F., Lin C., Ouyang Y. Performance Analysis of Retransmission and Redundancy
Schemes in Sensor Networks, Proc. IEEE Int. Conf. on Communications (ICC’08), 2008,
pp. 4407-4413.
23. Schmitt J.B., Zdarsky F.A., Thiele L. A Comprehensive Worst Case Calculus for Wireless Sensor
Networks with In-network Processing, Proc. 28th IEEE Int. Real-time Systems Symposium
(RTSS’07), 2007, pp. 193-202.
24. Xia F. QoS Challenges and Opportunities in Wireless Sensor/Actuator Networks, Sensors,
2008, Vol. 8, No. 2, pp. 1099-1110.
25. Raghunathan V., Schurgers C., Park S., Srivastava M.B. Energyaware Wireless Microsensor
Networks, IEEE Signal Processing Magazine, 2002, Vol. 19, No. 3, pp. 40–50.
26. Taddia C., Mazzini G. On the Retransmission Method in Wireless Sensor Networks, 28th
IEEE Int. Real-Time Systems Symp., 2007, pp. 193-202.
27. Crossbow Technology. Mica2 Data sheet. Available at: http://www.xbow.com/ products/
Product pdf files /Wireless pdf/MICA2 Datasheet.pdf (accessed 12 May 2021).