THE ESTIMATION OF CHANGING ENVIRONMENTAL CONDITIONS INFLUENCE ON THE WORKLOAD DISTRIBUTION IN THE UAV GROUP

Abstract

The paper considers the problem of workload distribution in a group of unmanned aerial vehicles (UAVs) when monitoring a certain area in a changing environment, which has a direct impact on the onboard energy resources consumption. The stage of a monitoring problem-solving, which includes the distribution of UAVs over scanning bands, is described here. When this stage is carried, there is no opportunity to take into account the factors of environmental impact. But these factors are crucial due to the limited onboard energy resources. In this regard, a situation is very likely when the UAV is not able to complete the sub-task assigned to it, which jeopardizes the completion of the entire mission of the group. To avoid this situation, it is proposed to use the technique of a decision-making on the need to relocate the workload in a group of mobile robots (MR). The decision-making is based on the ontological analysis procedure, which allows limiting the number of choices for workload relocation. The ontology model of the workload distribution in a group of UAVs was developed. This model takes into account the possibility of additional performance involvement either by means of the resources of neighboring UAVs, or by means of devices of the "foggy" layer. Examples of production rules are given, on the basis of which a decision is made on the need to relocate the workload. A comparative estimation of the resources volume involved in the implementation of two methods of workload relocation problem solving, depending on the frequency of changes in environmental conditions, is carried out. The results of computational experiments have shown that the method based on ontological analysis is more efficient in comparison with the method based on LDG (Local Device Group) in terms of the amount of resources involved. This makes it possible to increase the time of joint mission implementation by the UAV group.

Authors

References

1. Makhutov N.A., Permyakov V.N., Akhmetkhanov R.S., Dubinin E.F., Zakharov N.S., Reznikov
D.O. i dr. Diagnostika i monitoring sostoyaniya slozhnykh tekhnicheskikh sistem: uchebnoe
posobie [Diagnostics and monitoring of the state of complex technical systems: a textbook].
Tyumen': TIU, 2017, 632 p.
2. Demeshko T.S. Ponyatie, sushchnost', zadachi monitoringa i prognoza v sisteme upravleniya
regionom [The concept, essence, tasks of monitoring and forecasting in the regional management
system], Obrazovanie i nauka bez granits: sotsial'no-gumanitarnye nauki [Education and
science without borders: social and humanitarian sciences], 2020, No. 13, pp. 57-63.
3. Frolov S.V., Lyadov M.A., Komarova I.A., Ostapenko O.A. Sovremennye tendentsii razvitiya
meditsinskikh informatsionnykh sistem monitoringa [Modern trends in medical information systems
for monitoring], Voprosy sovremennoy nauki i praktiki. Universitet im. V.I. Vernadskogo
[Problems of Contemporary Science and PracticeVernadsky University], 2013, No. 2 (46),
pp. 66-75.
4. Kapustyan S.G., Orda-Zhigulina M.V., Orda-Zhigulina D.V. Metod robastno ustoychivogo
uprav eniya dvizheniem gruppy m bi 'nykh r b t v s « ider m» d ya sistem m nit ringa i
prognozirovaniya opasnykh protsessov i obespecheniya bezopasnosti naseleniya i beregovoy
infrastruktury [Method of robustly stable motion control of a group of mobile robots with a leader
for monitoring and diagnostics systems and ensuring the safety of the population and coastal infrastructure],
Nauka Yuga Rossii [Science in the south of Russia], 2021, Vol. 17, No. 2, pp. 66-73.
5. GOST R 53564-2009. Kontrol' sostoyaniya i diagnostika mashin. Monitoring sostoyaniya
oborudovaniya opasnykh proizvodstv. Trebovaniya k sistemam monitoring [Condition monitoring
and diagnostics of machines. Hazardous equipment monitoring. Requirements for monitoring
systems]. Moscow: Standartinform, 2019, 16 p.
6. GOST R 56875-2016. Informatsionnye tekhnologii. Sistemy bezopasnosti kompleksnye i
integrirovannye. Tipovye trebovaniya k arkhitekture i tekhnologiyam intellektual'nykh sistem
monitoringa dlya obespecheniya bezopasnosti predpriyatiy i territoriy [Information technologies. Comprehensive and integrated security systems. Standart requirements for the architecture,
hardware and software intelligent monitoring systems to ensure the safety of enterprises
and territories]. Moscow: Standartinform, 2019, 40 p.
7. Kirsanova A.A., Radchenko G.I., Chernykh A.N. Obzor tekhnologiy organizatsii tumannykh
vychisleniy [Overview of fog computing organization technologies], Vestnik YuUrGU. Seriya:
Vychislitel'naya matematika i informatika [Bulletin of the South Ural State University. Series:
Computational Mathematics and Software Engineering], 2020, No. 9 (3), pp. 35-63.
8. Zhang C. Design and application of fog computing and Internet of Things service platform for
smart city, Future Generation Computer Systems, 2020, Vol. 112, pp. 630-640.
9. Naeem R.Z., Bashir S., Amjad M.F., Abbas H., and Afzal H. Fog computing in internet of
things: Practical applications and future directions, Peer-to-Peer Networking and Applications,
2019, Vol. 12, No. 5, pp. 1236-1262.
10. Kapustyan S.G., Gayduk A.R. Informatsionnoe obespechenie gruppovykh deystviy BLA pri
reshenii zadach monitoringa bol'shikh territoriy [Information support for group actions of uavs
when solving problems of monitoring large territories], Zakonomernosti formirovaniya i
vozdeystviya morskikh, atmosfernykh opasnykh yavleniy i katastrof na pribrezhnuyu zonu RF v
usloviyakh global'nykh klimaticheskikh i industrial'nykh vyzovov: Mater. II Mezhdunarodnoy
nauchnoy konferentsii pamyati chlena-korrespondenta RAN D.G. Matishova ("Opasnye
yavleniya - II"). g. Rostov-na-Donu (6–10 iyulya 2020 g.) [Patterns of formation and impact of
marine, atmospheric hazards and disasters on the coastal zone of the Russian Federation in the
context of global climatic and industrial challenges: Materials of the II International Scientific
Conference in Memory of Corresponding Member of the Russian Academy of Sciences
D.G. Matishov ("Dangerous Phenomena - II"). Rostov-on-Don (July 6-10, 2020). Rostov-on-
Don: Izd-vo YuNTS RAN, 2020, pp. 332-335.
11. Gorbunov A.A., Galimov A.F. Vliyanie meteorologicheskikh faktorov na primenenie i
bezopasnost' poleta bespilotnykh letatel'nykh apparatov s bortovym retranslyatorom
radiosignala [The influence of meteorological factors on the use and flight safety of unmanned
aerial vehicle with side repeater radio], Vestnik Sankt-Peterburgskogo universiteta GPS MCHS
Rossii [Scientific and analytical journal bulletin of the St. Petersburg university of the state fire
service of the ministry of emergency situations of Russia], 2016, Issue No. 1, pp. 7-15.
12. BPLA v usloviyakh arkticheskogo regiona [UAVs in the conditions of the Arctic region],
Neftegaz.ru, 2019. Available at: https://magazine.neftegaz.ru/articles/tsifrovizatsiya/473748-
bpla-v-usloviyakh-arkticheskogo-regiona (accessed 02 July 2021).
13. Mel'nikov A.V., Gayday V.A., Rogozin E.A. Postroenie optimal'noy traektorii poleta
bespilotnogo letatel'nogo apparata pri vypolnenii zadachi poiska [Construction of optimal
flight path of unmanned aircraft when performing a search task], Vestnik voronezhskogo
instituta MVD Rossii [The bulletin of Voronezh Institute of the Ministry of Internal Affairs of
Russia], 2017, No. 1, pp. 52-62.
14. Kalyaev I.A., Kapustyan S.G., Usachev L.Zh. Metod resheniya zadachi raspredeleniya tseley v
gruppe BPLA setetsentricheskoy sistemoy upravleniya [The method of solving the problem of the
distribution of goals in the group of uavs by network-centric control system], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 12 (185), pp. 55-70.
15. Kureychik V.M., Safronenkova I.B. Ontologicheskiy podkhod k realizatsii tekhnologiy
raspredelennykh vychisleniy v seti Internet [An ontological approach to distributed computing
technologies implementation on the internet], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2020, No. 4 (214), pp. 71-82.
16. Safronenkova I.B., Klimenko A.B. Otsenka effektivnosti metodov resheniya zadachi perenosa
vychis ite 'n y nagruzki v «tumann y» srede [The efficiency evaluation of workload relocation
pr b em s ving meth ds in «f g-c mputing» envir nment], Izvestiya TulGU. Tekhnicheskie
nauki [Izvestiya Tula State University. Engineering Sciences], 2020, No. 12, pp. 156-165.
17. Noy Natal'ya F, MakGinness Debora L. Razrabotka ontologiy 101: rukovodstvo po sozdaniyu
Vashey pervoy ontologii [Ontology Development 101: A Guide to Creating Your First Ontology].
Available at: http://www.labrate.ru/20181225/razrabotka_ontologiy_101_ruk.pdf (accessed
02 July 2021).
18. Gergel' V.P., Strongin R.G. Osnovy parallel'nykh vychisleniy dlya mnogoprotsessornykh
vychislitel'nykh sistem: ucheb. posobie [Fundamentals of parallel computing for multiprocessor
computing systems. Training manual]. Nizhniy Novgorod: Izd-vo NNGU im.
N.I. Lobachevskogo, 2003, 184 p.
19. Voevodin V.V., Voevodin Vl.V. Parallel'nye vychisleniya [Parallel computing]. Saint Petersburg:
BKhV-Peterburg, 2003, 608 p.
20. Mel'nik E.V., Safronenkova I.B., Klimenko A.B. Formirovanie ogranicheniy v zadache
perenosa vychislitel'noy nagruzki v RSAPR kak uslovie povysheniya kachestva
proektirovaniya [The restrictions forming in the workload relocation problem in DCAD systems
as a condition for design quality increasing], Izvestiya TulGU. Tekhnicheskie nauki
[Izvestiya Tula State University. Engineering Sciences], 2021, No. 2, pp. 357-364.
21. Klimenko A.B., Safronenkova I.B. A Technique of Workload Distribution Based on Parallel
Algorithm Structure Ontology, Advances in Intelligent Systems and Computing, 2019,
Vol. 1046, pp. 37-48.

Скачивания

Published:

2021-12-24

Issue:

Section:

SECTION I. MODELING OF PROCESSES AND SYSTEMS

Keywords:

UAV group, monitoring, ontology, workload relocation, fog-computing, cloud- computing