SIMULATION OF A HYBRID CONTROLLER FOR CONTROLLING PLASMA WELDING PARAMETERS
Abstract
One of the most common technological operations is welding of individual parts and blocks. Welding is widely used in shipbuilding, aviation, defense and chemical industries, in the construction of oil and gas pipelines. At the same time, very strict requirements are imposed on the quality of the weld in terms of strength, absence of voids and cavities, operability at high pressures (up to 100 kGf / cm2) and in a wide temperature range (± 50 ° C). Plasma (argon) welding meets these requirements most fully. A brief analytical review on the research topic was carried out. It is shown that a promising direction for the development of plasma welding control systems is the use of hybrid regulators created on the basis of classical automatic control methods and fuzzy control, formalizing the average knowledge of experts. The fuzzy component (expert knowledge) should be available for quick and easy input into the controller. A block diagram and a model of a single channel of a hybrid controller was developed in the Matlab Simulink environment. The current control channel was modeled using a fuzzy controller from the Fuzzy Logic library, using the Mamdani fuzzy output algorithm. 19 variants of linguistic and fuzzy variables were set, the surface of the variable membership function was obtained. It should be noted that it is possible to quickly enter linguistic assessments of experts into the memory of the hybrid controller. The behavior of hybrid controller models and standard PI and PID controllers under a single step action was analyzed. The hybrid regulator provides significantly better quality indicators (2.5-3 times) than standard regulators. The hybrid controller enters the steady-state mode after 6s, the PID controller – after 13s, the PI controller - after 15s, and the standard regulators have an overshoot (first emission) of up to 50%. Thus, the real possibility of constructing a fuzzy hybrid controller with specified characteristics is shown. It is possible to implement a hybrid controller in the form of an FPGA.
References
plavleniem i davleniem: ucheb. posobie [Equipment and fundamentals of metal welding technology
by melting and pressure: textbook]. Saint Petersburg: Izd-vo «Lan'», 2013, 464 p.
2. Eremin E.N. Plazmenno-dugovye tekhnologicheskie protsessy v svarochnom proizvodstve.
ucheb. posobie [Plasma-arc technological processes in welding production: textbook]. Omsk:
Izd-vo OmGTU, 2000, 275 p.
3. Wu C.S. Welding thermal processes and weld pool behaviors. Boca Raton: CRC Press/Taylor
& Francis Group; 2011, 321 p.
4. Wu C.S., Wang L., Ren W.J., Zhang X.Y. Plasma arc welding: Process, sensing, control and modeling,
Evolution and Materials Processing, and Institute of Materials Joining. Shandong University,
Jinan 250061, China, Journal of Manufacturing Processes, 2014, Vol. 16, pp. 74-85.
5. Finaev V.I., Glod O.D. Osnovy teorii sistem. ucheb. posobie [Fundamentals of systems theory:
tutorial]. Taganrog: Izd-vo TRTU, 2000, 156 p.
6. Volkova V.N., Denisov A.A. Osnovy teorii sistem i sistemnogo analiza [Fundamentals of systems
theory and system analysis]. Leningrad: Izd-vo SPbGTU, 1997, 510 p.
7. Peregudov F.I., Tarasenko F.P. Vvedenie v sistemnyy analiz: ucheb. posobie [Introduction to
System Analysis: textbook]. Moscow: Vyssh. shkola, 1989, 367 p.
8. Funabashi M. Fuzzy and neural hybrid expert systems: Synergetic AI, IEEE Expert: Intelligent
Systems and Their Applications, 1995, Vol. 10, Issue 4, pp. 32-40.
9. Gavrilov A.V., Novitskaya Yu.V. Gibridnye intellektual'nye sistemy [Hybrid intelligent systems].
Novosibirsk: NGTU, 2006.
10. Goonatilake S., Khebbal S. Intelligent Hybrid Systems. Publisher: Wiley, 1995. ISBN
0471942421.
11. Finaev V.I. Modeli prinyatiya resheniy [Decision making models]. Taganrog: TRTU, 2005,
101 p.
12. Zadeh L.A. Fuzzy logic and approximate reasoning, Synthese, 1975, Vol. 80, pp. 407 428.
13. Bershteyn L.S., Bozhenyuk A.V. Nechetkie modeli prinyatiya resheniy: deduktsiya, analogiya:
monografiya [Fuzzy decision-making models: deduction, analogy: monograph]. Taganrog:
Izd-vo TRTU, 2001, 110 p.
14. Gayduk A.R. Nepreryvnye i diskretnye sistemy upravleniya [Continuous and discrete control
systems]. 2nd ed. Moscow: Uchebno-metodicheskiy i izdatel'skiy tsentr «Uchebnaya
literatura», 2004, 252 p.
15. Kolesnikov A.V. Gibridnye intellektual'nye sistemy: teoriya i tekhnologiya razrabotki [Hybrid
intelligent systems: theory and development technology]. Saint Petersburg: Izd-vo SPbGTU,
2001, 600 p.
16. Witsenhausen H.S. A Class of Hybrid-State Continuous Time Dynamic Systems, IEEE Trans.
on Automatic Control, 1966, Vol. 11, No. 2.
17. Ignat'ev V.V. Adaptivnye gibridnye intellektual'nye sistemy upravleniya [Adaptive hybrid
intelligent control systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2010, No. 12 (113), pp. 89 94.
18. Zu Ming Liu, Shuang Lin Cui, Zhen Luo, Chang Zhen Zhang, Zheng Ming Wang, Yu Chen
Zhang. Plasma arc welding: Process variants and its recent developments of sensing, controlling
and modeling, Journal of Manufacturing Processes, August 2016, Vol. 23, pp. 315 327.
19. Benjamin Das, N. Yadaiah, Rupshree Ozah, Sohini Chowdhury, Arpan Kumar Mondal, M.
Muralidhar. A Perspective Review on Estimation of Keyhole Profile during Plasma Arc Welding
Process, Material today: Proceedings, 2018, Vol. 5, Issue 2, Part 1, pp. 6345-6350.
20. Al'-Shamki Amir Abdulkadim Ouda. Programmnoe obespechenie dlya issledovaniya lineynykh
modeley upravleniya na primere upravleniya plazmennoy svarkoy [Software for the study of
linear control models on the example of plasma welding control], Tekhnologii razrabotki
informatsionnykh sistem TRIS-2019: Mater. konferentsii [Technologies for the development of
information systems TRIS-2019: Conference materials]. Vol. 1. Taganrog: Izd-tvo YuFU,
2019, pp. 131-136.
21. Al-Shamkhee Ameer Abdulkadhim Oudah, Shepelev Anatoliy Fedorovich, Finaev Valeriy
Ivanovich & Zargaryan Elena Valerevna. Research on the possibilities of using linear observation
models in welding processes, Periodicals of Engineering and Natural Sciences, September
2019, Vol. 7, No. 3, pp. 1163-1176. ISSN 2303-4521.
22. Ignatyev V., Soloviev V., Beloglazov D., Kureychik V., Ignatyeva A., Vorotova A. System for
Automatic Adjustment of Intelligent Controller Parameters, Communications in Computer and
Information Science, 2019, Vol. 1084, pp. 226-2423. DOI: 10.1007/978-3-030-29750-3_18.
23. Ignatyev V.V., Finaev V.I. The use of hybrid regulator in design of control systems, World
Applied Sciences Journa, 2013, Issue 10, Vol. 23, pp. 1291-1297. DOI:
10.5829/idosi.wasj.2013.23.10.13144.
24. Ignatyev V., Soloviev V., Beloglazov D., Kureychik V., Andrey K., Ignatyeva A. The Fuzzy
Rule Base Automatic Optimization Method of Intelligent Controllers for Technical Objects
Using Fuzzy Clustering, Communications in Computer and Information Science: Conference
on Creativity in Intelligent Technologies and Data Science, CIT and DS 2019; Volgograd;
Russian Federation; 2019–2019, Vol. 1084, pp. 135-1523. The Code 230149. DOI:
10.1007/978-3-030-29750-3_11.
25. Zargaryan E.V., Zargaryan Y.A., Dmitrieva I.A., Sakharova O.N. and Pushnina I.V. Modeling
design information systems with many criteria. Information Technologies and Engineering –
APITECH – 2020, Journal of Physics: Conference Series, 2020, Vol. 2085 (3), pp. 032057(1-7).
DOI: 10.1088/1742-6596/1679/3/032057.
26. Shestova E.A., Shadrina V.V. Issledovanie postroeniya vidov operatsiy nad nechetkimi
mnozhestvami i nechetkoy approksimiruyushchey sistemy v srede MATLAB: ucheb. posobie
[Study of building types of operations on fuzzy sets and a fuzzy approximating system in the
MATLAB environment: textbook]. Taganrog, 2019.