DETERMINATION OF THE REDUCTION COEFFICIENT OF THE ATMOSPHERIC ELECTRIC FIELD IN THE SURFACE LAYER
Abstract
The article examines the problem of interpretation of atmospheric-electrical observations conducted regularly on a network of ground stations that are an integral part of the general monitoring of the state of the atmosphere. To solve the general task of monitoring - obtaining regime data on the electric field of the atmosphere and identifying trends in its changes, a comparative analysis of measurement data at various observation points is required. The electric field strength (potential gradient) is usually measured at a certain height from the earth's surface using various methods (geometry) of installing sensors near the earth's surface. The resulting values of the electric field may differ greatly from the reference values, which are understood as measurements on a flat surface in plain conditions. The structure of the atmospheric electric field near a flat electrode with spherical inhomogeneity investigates in the paper. For the joint analysis of data from various observation points, their unification is usually carried out by introducing a reduction coefficient: the ratio of the values of the electric field strength in geometrically distorted conditions to its reference value on the plain. It is shown that the values of the reduction coefficient strongly depend not only on the geometry of the sensor installation, but also on the values of the measured electric field. To correctly calculate the reduction coefficient of the electric field, it is proposed to use simultaneously the geometric distortion coefficient of the electric field and the coefficient taking into account the influence of the electrode effect near the earth's surface. Calculations of the values of the reduction coefficient in the vicinity of the spherical inhomogeneity of the electrode surface for the cases of classical and turbulent electrode effect in the surface layer are performed. The influence of meteorological factors and the measured electric field on the values and spatial distribution of the reduction coefficient has been established. For the correct interpretation of the results of ground-based atmospheric-electrical observations, taking into account the reduction coefficient, it is necessary to take into account not only the geometry of the sensor installation, but also the effect of the electrode effect on the obtained values of the electric field.
References
atmosfery [Equipment for research of the surface layer of the atmosphere]. Leningrad:
Gidrometeoizdat, 1977, 319 p.
2. Kupovykh G.V., Kudrinskaya T.V., Grivtsov V.V. The atmosphere electrical characteristics’
monitoring as an element of technosphere safety, IOP Conference Series: Materials Science
and Engineering, 2020, Vol. 913, 052041, 6 p.
3. Kupovykh G.V., Sheftel' V.M., Yaroshenko A.N. K voprosu opredeleniya koeffitsienta reduktsii
pri izmerenii atmosfernogo elektricheskogo polya v prielektrodnom sloe [On the issue of determining
the reduction coefficient when measuring the atmospheric electric field in the near–
electrode layer], Trudy VGI [Proceedings of the Highland Geophysical Institute]. Moscow:
Gidrometeoizdat, 1989, Issue 76, pp. 66-69.
4. Martynov A.A., Kupovykh G.V. O svyazi znacheniy napryazhennosti elektricheskogo polya
atmosfery, izmerennykh na razlichnykh vysotakh u zemli [On the relationship of the values of
the electric field strength of the atmosphere measured at different altitudes near the earth],
Tezisy dokladov IV Vsesoyuznogo simpoziuma po atmosfernomu elektrichestvu [Abstracts of
the IV All-Union Symposium on Atmospheric Electricity], Nal'chik 1990, pp. 45.
5. Kupovykh G.V., Kudrinskaya T.V., Timoshenko D.V., Klovo A.G. Electric field measurements
at mountain stations in Baksan gorge and on Cheget peak (Elbrus region), CATPID-2019. IOP
Conf. Series: Materials Science and Engineering, 2019, Vol. 698, 044035, 6 p.
6. Tuomi T.J. The atmospheric electrode effect over snow, J. Atm. and Terr. Phys., 1982, Vol. 44,
pp. 737-745.
7. Kalita V.M., Laptukhov A.I., Moskalenko A.M. i dr. Raspredelenie elektricheskogo polya,
ob"emnogo zaryada i kontsentratsii ionov v atmosfere vblizi zaryazhennykh tel [Distribution
of the electric field, volume charge and ion concentration in the atmosphere near charged bodies],
V kn.: Fizicheskie protsessy v ionosfere i magnitosfere [In: Physical processes in the ionosphere
and magnetosphere]. Moscow: Izd-vo AN SSSR, 1984, pp. 110-115.
8. Kudrinskaya T.V., Klovo A. G., Kupovykh G.V., Timoshenko D.V. Reduction coefficient and
electric field near plane electrode with geometric heterogeneity, Journal of Physics: IOP Conf.
Series. VIII All-Russian Conference on Atmospheric Electricity, 2020, 1604, 012005, 8 p.
9. Klovo A.G., Kudrinskaya T.V., Kupovykh G.V., Svidel'skiy S.S., Timoshenko D.V.
Raspredelenie napryazhennosti atmosfernogo elektricheskogo polya i potentsiala vblizi
ploskogo elektroda so sfericheskoy neodnorodnost'yu [Distribution of atmospheric electric
field intensity and potential near a flat electrode with spherical inhomogeneity], Mater. VI
Vserossiyskoy nauchnoy konferentsii «Problemy voenno-prikladnoy geofiziki i kontrolya
sostoyaniya prirodnoy sredy» [Materials of the VI All-Russian Scientific Conference "Problems
of military–applied geophysics and control of the state of the natural environment"].
Saint Petesburg: VKA imeni A.F.Mozhayskogo, 2020, pp. 279-283.
10. Kupovykh G.V., Morozov V.N., Shvarts Ya.M. Teoriya elektrodnogo effekta v atmosfere:
monografiya [The theory of the electrode effect in the atmosphere: monograph]. Taganrog.
Izd-vo TRTU. 1998, 123 p.
11. Hoppel W.A. Theory of the electrode effect, Journal Atmospheric and Terrestrial Physics,
1967, Vol. 29, No. 6, pp. 709-721.
12. Kupovykh G.V., Morozov V.N. Klassicheskiy (neturbulentnyy) elektrodnyy effekt v prizemnom
sloe [Classical (non-turbulent) electrode effect in the surface layer], Izvestiya vysshikh
uchebnykh zavedeniy. Severo-Kavkazskiy region. Estestvennye nauki [Izvestia of higher educational
institutions. The North Caucasus region. Natural sciences], 2003, No. 2, pp. 43-46.
13. Kupovykh G.V., Klovo A.G., Grivtsov V.V., Belousova O.V. Modelirovanie elektrodinamicheskoy
struktury neturbulentnogo prizemnogo sloya [Modeling of the electrodynamic structure of a nonturbulent
surface layer], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering
Sciences], 2022, No. 3 (227), pp. 234-2434.
14. Tikhonov A.N., Samarskiy A.A. Uravneniya matematicheskoy fiziki [Equations of mathematical
physics]. Moscow: Nauka, 1972, 736 p.
15. Kupovykh G.V., Timoshenko D.V., Klovo A.G., Kudrinskaya T.V. Electrodynamic processes
models in atmospheric surface layer, IOP Conference Series: Materials Science and Engineering,
2019, Vol. 698, 044034, 8 p.
16. Kupovykh G., Redin A., Boldyreff A. Modeling of ionization-recombination processes in the
atmospheric surface layer, Journal of Electrostatics, 2013, Vol. 71, pp. 305-311.
17. Hoppel W.A. Electrode effect: comparison of the theory and measurement, In: Planetary Electrodynamics,
2, S.C. Coroniti and J. Hughes; editors: Gordon and Breach Science Publishers.
New York, 1969, pp. 167-181.
18. Kupovykh G.V., Morozov V.N. Turbulentnyy elektrodnyy effekt v prizemnom sloe [Turbulent
electrode effect in the surface layer], Izvestiya vysshikh uchebnykh zavedeniy. Severo-
Kavkazskiy region. Estestvennye nauki [Izvestia of higher educational institutions. The North
Caucasus region. Natural sciences.], 2003. Appendix No. 3, pp. 55-62.
19. Svidel'skiy S.S., Litvinova V.S., Kupovykh G.V., Klovo A.G. Formirovanie struktury
atmosfernogo elektrodnogo sloya [Formation of the structure of the atmospheric electrode layer],
Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2020,
No. 5, pp. 130-141
20. Belousova O.V., Kupovykh G.V., Klovo A.G., Grivtsov V.V. Rezul'taty modelirovaniya
elektrodinamicheskoy struktury turbulentnogo prizemnogo sloya [Results of modeling the
electrodynamic structure of a turbulent surface layer], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2022, No. 4 (228), pp. 245-253.