RANK PROCESSING OF VIBRATION SENSOR SIGNALS FOR SIGNALING THE LANDING OF A AMPHIBIOUS AIRCRAFT UNDER CONDITIONS OF A PRIORI UNCERTAINTY

Abstract

The purpose of the work is to use a rank model of signal processing for signaling the landing of an amphibious aircraft. Rank processing refers to nonparametric methods of detecting a signal against a background of interference. Nonparametric methods are used if the functional type of the input data distribution is unknown and only the most general differences between the presence and absence of a signal are indicated. Almost all nonparametric detectors contain devices as a component element that perform some invariant transformation of the S array of sample values of X. As a result of this transformation, a new array Z = SX is formed, the distribution of elements of which is precisely known in the absence of a signal. The transformation S, which is chosen heuristically, allows us to reduce the problem of detecting a signal against a background of interference with an unknown distribution to the problem of testing a simple hypothesis regarding the distribution of the array Z. Research objectives: 1) preliminary digital filtering of amphibious aircraft flight records for the use of rank processing; 2) conducting an experiment to obtain the characteristics of a rank detector used to signal the landing of an amphibious aircraft; 3) analysis of the results obtained. A model of signal processing of a vibration sensor for signaling the landing of an amphibious aircraft is proposed. The model consists of a bandpass filter (PF), a COEX calculator, a divider, a rank detector and a reference sample generator. The rank detector allows you to reduce the task of detecting the vibration sensor signal against the background of interference to the task of testing a simple hypothesis regarding the distribution of ranks. The nonparametric Watson agreement criterion is used to make a decision on the presence of a drive signal. The proposed processing model provides the following parameters of the flood alarm system: 1) insensitivity to changing characteristics of signals and interference, 2) the decision-making algorithm guarantees high quality of detection in conditions of significant a priori uncertainty. The results of the conducted studies show: 1) the distribution of ranks in the absence of a signal is always approximated by a uniform distribution law. In situations where a signal is present in the mixture, the uniform distribution is destroyed, and the presence of a signal is determined by a set threshold, 2) the sensor based on rank criteria provides high quality detection of the amphibious aircraft landing signal. The proposed approach to solving the detection problem can find a place in many applied problems where there is a priori uncertainty. For example, in radar, sonar, communications, medicine and other fields of science and technology.

Authors

References

1. Prikhodchenko A.I. Vybor statisticheski optimal'nogo kriteriya soglasiya ravnomernogo
raspredeleniya dlya rangovoy obrabotki signalov v usloviyakh apriornoy neopredelennosti [Selection
of statistically optimal criterion of uniform distribution agreement for rank signal processing
under conditions of a priori uncertainty], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2021, No. 3 (220).
2. Prikhodchenko A.I. Neparametricheskiy kriteriy soglasiya ravnomernogo raspredeleniya dlya
rangovoy obrabotki signalov v usloviyakh apriornoy neopredelennosti [Nonparametric criterion
of uniform distribution agreement for rank signal processing under conditions of a priori uncertainty],
Komp'yuternye i informatsionnye tekhnologii v nauke, inzhenerii i upravlenii «KomTekh-
2021»: Mater. Vserossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym uchastiem
[Computer and information technologies in science, engineering and management "Komtech-
2021": Materials of the All-Russian Scientific and Technical Conference with international participation]:
in 2 vol. Rostov-on-Don; Taganrog: Izd-vo YuFU, 2021.
3. Markovich I.I., Dushenin Yu. V., Mar'ev A.A., Dolgosheev Yu.B. Patent № 2611466
Rossiyskaya Federatsiya, MPK B54D 45/04, G08G 5/02. Sposob signalizatsii privodneniya i
vzleta s vodnoy poverkhnosti samoleta–amfibii i ustroystvo dlya ego osushchestvleniya
[Method of signaling landing and take-off from the water surface of an amphibious aircraft anda device for its implementation]; applicant and patent holder Federal State Autonomous Educational
Institution of Higher Education "Southern Federal University"; application
05.10.2015; publ. 22.02.2017, Bull. No. 6, 12 p.
4. Lapiy V.Yu., Kalyuzhnyy A Ya., Krasnyy L.G. i dr. Ustroystva rangovoy obrabotki informatsii
[Devices of rank processing of information]. K.: Tekhnika, 1986, 120 p., pp. 119-120.
5. Mar'ev A.A., Prikhodchenko A.I. Algoritm sinteza tsifrovykh nerekursivnykh fil'trov s
amplitudno-chastotnymi kharakteristikami proizvol'noy formy [Algorithm of synthesis of digital
non-recursive filters with amplitude-frequency characteristics of arbitrary shape],
Komp'yuternye i informatsionnye tekhnologii v nauke, inzhenerii i upravlenii «KomTekh-
2020»: Mater. Vserossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym
uchastiem [Materials of the All-Russian Scientific and Technical Conference with international
participation]: in 2 vol. Rostov-on-Don; Taganrog: Izd-vo YuFU, 2020.
6. R 50.1.033–2001. Rekomendatsii po standartizatsii. Prikladnaya statistika. Pravila proverki
soglasiya opytnogo raspredeleniya s teoreticheskim. Ch. I. Kriterii tipa khi-kvadrat
[P 50.1.033–2001. Recommendations for standardization. Applied statistics. Rules for verifying
the agreement of the experimental distribution with the theoretical one. Part I. Criteria of
the chi-square type]. Moscow: Izd-vo standartov, 2002, 87 p.
7. Lemeshko B.Yu., Blinov P.Yu. Kriterii proverki otkloneniya raspredeleniya ot ravnomernogo
zakona [Criteria for checking the deviation of the distribution from the uniform law]. Novosibirsk,
2015, 182 p.
8. Lemeshko B.Yu., Blinov P.Yu., Lemeshko S.B. O kriteriyakh proverki ravnomernosti zakona
raspredeleniya veroyatnostey [On the criteria for checking the uniformity of the probability
distribution law], Avtometriya [Autometry], 2016, Vol. 52, No. 2.
9. Lemeshko B.Yu., Gorbunova A.A. O primenenii i moshchnosti neparametricheskikh kriteriev
soglasiya Kupera, Vatsona i Zhanga [On the application and power of nonparametric criteria
of Cooper, Watson and Zhang agreement], Izmeritel'naya tekhnika [Measuring Technique],
2013, No. 5, pp. 3-9.
10. Lemeshko B.Yu., Gorbunova A.A. Application of nonparametric Kuiper and Watson tests of
goodness-of-fit for composite hypotheses, Measurement Techniques, 2013, Vol. 56, No. 9,
pp. 965-973.
11. Watson G.S. Goodness-of-fit tests on a circle. I, Bio-metrika, 1961. – Vol. 48, No. 1-2,
pp. 109-114.
12. Watson G.S. Goodness-of-fit tests on a circle. II, Bio-metrika, 1962, Vol. 49, No. 1-2, pp. 57-63.
13. Kobzar' A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh
sotrudnikov [Applied mathematical statistics. For engineers and researchers]. Moscow:
Fizmatlit, 2006, 816 p.
14. Bykov V.V. TSifrovoe modelirovanie v statisticheskoy radiotekhnike [Digital modeling in statistical
radio engineering]. Moscow: Izd-vo «Sovetskoe radio», 1971, 328 p.
15. Fedosov V.P. Prikladnye matematicheskie metody v statisticheskoy radiotekhnike: ucheb.
posobie [Applied mathematical methods in statistical radio engineering: a textbook]. Taganrog:
Izd-vo TRTU, 1998, 74 p.
16. Ryzhov V.P., Fedosov V.P. Optimal'nye metody obrabotki signalov na fone pomekh: Tekst
lektsiy [Optimal methods of signal processing against the background of interference: Text of
lectures]. Taganrog: Izd-vo TRTI, 1990, 54 p.
17. Fedosov V.P. Radiotekhnicheskie tsepi i signaly: ucheb. posobie [Radio engineering circuits
and signals: textbook]. Rostov-on-Don: Izd-vo YuFU, 2017, 282 p.
18. Ryzhov V.P., Fedosov V.P. Analiz radiotekhnicheskikh ustroystv pri vozdeystvii sluchaynykh
protsessov [Analysis of radio engineering devices under the influence of random processes].
Taganrog: TRTI, 1986.
19. Ryzhov V.P., Fedosov V.P. Statisticheskie metody obrabotki signalov [Statistical methods of
signal processing]. Taganrog: TRTI, 1986.
20. Repin V.G., Tartakovskiy G.P. Statisticheskiy sintez pri apriornoy neopredelennosti i
adaptatsiya informatsionnykh system [Statistical synthesis with a priori uncertainty and adaptation
of information systems]. Moscow: Sovetskoe radio, 1977, 432 p.
21. Bogdanovich V.A., Vostretsov A.G. Teoriya ustoychivogo obnaruzheniya, razlicheniya i
otsenivaniya signalov [Theory of stable detection, discrimination and evaluation of signals].
Moscow: Fizmatlit, 2003, 320 p.
22. Gaek Ya., Shidak Z. Teoriya rangovykh kriteriev [Theory of rank criteria]: trans. from engl.
Moscow: Nauka, 1971.
23. Rabiner L., Gould R. Teoriya i primenenie tsifrovoy obrabotki signalov [Theory and application
of digital signal processing]. Moscow: Mir, 1978.
24. Sergienko A.B. Tsifrovaya obrabotka signalov [Digital signal processing]. Saint Petersburg:
Izd-vo «Piter», 2002, 608 p.

Скачивания

Published:

2023-02-27

Issue:

Section:

SECTION II. INFORMATION PROCESSING ALGORITHMS

Keywords:

Amphibious aircraft, vibration sensor, rank criteria, a priori uncertainty, criteria of agreement, uniform distribution