METHODOLOGY FOR DETERMINING THE PARAMETERS OF THE TRACKING SYSTEM OF THE RTK VN MOTION CONTROL IN THE AUTONOMOUS GUIDANCE MODE
Abstract
The aim of the study is to improve the accuracy of the motion control system of ground-based robotic systems for military purposes (RTK VN) of tracked type based on the application of the method of constructing two-circuit automatic control systems equivalent to combined systems. The use of automatic control systems equivalent to combined systems makes it possible to increase the accuracy of automatic control systems by reducing the value of the dynamic error, that is, achieving error invariance, without violating the stability of the system. The objective of the study is the possibility of achieving zero error in single-circuit and double-circuit automatic motion control systems RTK. To solve this problem, it is necessary to determine the structure of the ACS and draw up block diagrams of automatic traffic control systems of the RTK VN along the angle of the course. This task can be solved in stages. During the first stage, the connection of control errors in single-circuit automatic control systems with a constant input effect is considered. The next stage is the justification of the construction of two-circuit systems taking into account the linear input effect. Next, it is necessary to determine the parameters of the second circuit of the two-circuit ACS by the movement of the RTK. The problem considers the relationship of the dynamic control error in dual-circuit ACS by the movement of the RTK along the angle of the course with the linear input effect. The method used in the article allows us to solve the problem of achieving the invariance of the error in the ACS by the movement of the RTK VN along the angle of the course. The paper presents a methodology for determining the parameters and structure of the ACS in order to achieve zero error, which, in turn, leads to increased accuracy while meeting the requirements for the stability of the system. The calculation results confirm the operability of the proposed methodology and show that with various input effects (constant and linear) in single-circuit and double-circuit ACS, the RTK movement along the course can achieve independence of reducing the dynamic error from the stability of the ACS (i.e., achieving error invariance without loss of stability of the system).
References
of automatic control: textbook]. Serpukhov: FVA RVSN im. Petra Velikogo, 2020, 476 p.
2. Sviridov V.V., Pushkarev Yu.A. Model' otsenki kachestva kharakteristik robototekhnicheskogo
kompleksa dlya obnaruzheniya narushiteley v lesistoy mestnosti [A model for assessing the
quality of characteristics of a robotic complex for detecting intruders in a wooded area],
Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and numerical
methods], 2021, No. 29, pp. 77-90.
3. Pushkarev Yu.A., Sviridov V.V. Metod raspoznavaniya ob"ektov na osnove ikh signal'nogeometricheskikh
priznakov sredstvami robototekhnicheskogo kompleksa okhrany [Method of
object recognition based on their signal-geometric features by means of a robotic security
complex], Matematicheskoe modelirovanie i chislennye metody [Mathematical modeling and
numerical methods], 2022, Vol. 34, No. 9, pp. 88-106.
4. Vishnyakov L.V., Kim V.Ya. Modelirovanie poiska-obnaruzheniya-raspoznavaniya po
teplovizionnomu izobrazheniyu s izmenyayushchimsya kachestvom [Modeling of searchdetection-
recognition based on a thermal image with varying quality], Izvestiya RAN TiSU
[Izvestiya RAS TiSU], 2020, No. 6, pp. 96-108.
5. Pushkarev Yu.A., Pushkareva E.Yu., Piskulin I.V. Upravlenie robototekhnicheskim
kompleksom po uglu kursa na osnove metoda raznosti skorostey [Control of the robotic complex
by the angle of the course based on the speed difference method], Izvestiya IIF [Izvestiya
IIF], 2022, No. 4, pp. 45-51.
6. Davydov O.I., Platonov A.I. Metod opredeleniya parametrov upravleniya traektoriey dvizheniya
mobil'nogo robota [Method of determining parameters of control of the trajectory of movement of a
mobile robot], Izvestiya RAN TiSU [Izvestiya RAS TiSU], 2017, No. 1, pp. 168-176.
7. Pushkarev Yu.A., Pushkareva E.Yu., Piskulin I.V. Metodika opredeleniya oblastey
ustoychivogo dvizheniya robota po kursu pri upravlenii po metodu raznostey skorostey [Methodology
for determining the areas of stable movement of the robot along the course when controlled
by the method of speed differences]. 4 TSNII Minoborony Rossii, g. Korolev, 2022,
No. 168, Vol. 1, pp. 45-54.
8. Richard C. Dorf, Robert H, Bishop. Modern Control Systems. Fourth Edition. Addison – Wesley.
1998, 832 p.
9. Pushkarev Yu.A., Pushkareva E.Yu. Sistemy avtomaticheskogo upravleniya v raketnokosmicheskoy
tekhnike. Zadachi slezheniya i terminal'nogo upravleniya: monografiya [Automatic
control systems in rocket and space technology. Tasks of tracking and terminal management:
monograph]. Serpukhov, FVA RVSN im. Petra Velikogo, 2020, 379 p.
10. Pushkarev Yu.A., Pushkareva E.Yu. Zadachi i metody sinteza sledyashchikh i terminal'nykh
sistem avtomaticheskogo upravleniya v raketno-kosmicheskoy tekhnike: monografiya [Tasks
and methods of synthesis of tracking and terminal automatic control systems in rocket and
space technology: monograph]. Mashinostroenie – Polet, 2022, 647 p.
11. Pushkarev Yu.A., Pushkareva E.Yu. Metody sinteza sledyashchikh i terminal'nykh
avtomaticheskikh sistem vysokoy tochnosti: monografiya [Methods of synthesis of tracking
and terminal automatic systems of high accuracy: monograph]. Serpukhov: FVA RVSN im.
Petra Velikogo, 2016, 435 p.
12. Pushkarev Yu.A., Rodygin V.A. Terminal'nyy metod dostizheniya invariantnosti sistemy
upravleniya dvizheniem ob"ekta [Terminal method of achieving invariance of the object motion
control system], Izvestiya RAN TiSU [Izvestiya RAS TiSU], 2009, No. 6, pp. 12-18.
13. Pushkarev Yu.A., Rodygin V.A. Kriteriy dostizheniya invariantnosti v determinirovannykh
sistemakh upravleniya dvizheniem ob"ektov [Criterion for achieving invariance in deterministic
systems for controlling the movement of objects], Izvestiya RAN TiSU [Izvestiya RAS
TiSU], 2011, No. 4, pp. 37-47.
14. Krud'ko P.D., Chkheidze G.A. Sintez algoritmov upravleniya sledyashchikh sistem vysokoy
dinamicheskoy tochnosti [Synthesis of control algorithms for tracking systems of high dynamic
accuracy], Izvestiya RAN. Tekhnicheskaya kibernetika [Izvestiya RAS. Technical cybernetics],
1992, No. 2, pp. 145-178.
15. Filaretov V.F., Yuzhimets D.A. Metod formirovaniya gladkikh traektoriy dvizheniya
mobil'nykh robotov v neizvestnom zaranee okruzhenii [Method of forming smooth trajectories
of movement of mobile robots in an unknown environment in advance], Izvestiya RAN TiSU
[Izvestiya RAS TiSU], 2017, No. 4, pp. 174-184.
16. Rao A.V. Survey of Numerikal method for Optimal Control, Advances Astronautical Selences,
2010, Vol. 135, pp. 497-528.
17. Korsunskiy V.A. Perspektivy razvitiya voennykh mobil'nykh robototekhnicheskikh kompleksov
nazemnogo bazirovaniya v Rossii [Prospects for the development of military mobile robotic
complexes of ground-based in Russia]. Moscow: MGTU im. Baumana, 2013, 379 p.
18. Fazletdinov I.R. Perspektivy primeneniya robototekhnicheskikh kompleksov voennogo
naznacheniya v interesakh Raketnykh voysk strategicheskogo naznacheniya [Prospects for the
use of military-purpose robotic complexes in the interests of Strategic Missile Forces],
Voennaya mysl' [Military thought], 2022, No. 5, pp. 105-111.
19. Skiba V.A. i dr. Robototekhnicheskie kompleksy voennogo naznacheniya: ucheb. posobie [Robotic
complexes for military purposes: a textbook]. Balashikha: VA RVSN im. Petra
Velikogo, 2021, 168 p.
20. Lopota A.V. Nazemnye robototekhnicheskie kompleksy voennogo i spetsial'nogo
naznacheniya [Ground-based robotic complexes for military and special purposes]. St. Petersburg:
TSNII robototekhniki i tekhnicheskoy kibernetiki, 2016, 29 p.