RECURSPIVE SEPARABLE 2D DIGITAL FILTER FOR INCREASING THE SHARPNESS OF RGB IMAGES

Abstract

An important role in the perception of image quality is sharpness, that is, the An important role in the perception of image quality is played by sharpness, that is, the magnitude of the brightness gradient in areas near the boundaries of objects. This characteristic is responsible for the clarity and detail of small image elements. Defocusing the camera lens and insufficient illumination are the main factors that can lead to digital image blurring. To increase the sharpness, various processing methods are used, such as filtering in the frequency domain, for example, the use of fast Fourier transform to emphasize the boundaries and textures of the image. The use of this typeof filtering allows you to control the contrast and frequency content of the image, which leads to an improvement in visual perception. However, this method has a number of significant drawbacks, such as logarithmic complexity and performing additional calculations associated with forward and inverse Fourier transforms. Therefore, the preferred method of image sharpening is the so-called spatial processing, which provides direct filtering of image pixels without additional transformations, and the reuse of processing results (recursive component) in the filter allows you to reduce the number of operations, reduce computational complexity. The article describes the development of an effective recursive separable two-dimensional digital filter to sharpen largedimensional RGB images. The algorithms of its construction are given, the corresponding block diagrams are designed. The filter has the property of more uniform detail of image objects, and is less susceptible to the creation of pulse noise. Also, for the original high-resolution RGB image, a blur filter is modeled, the matrix of which is filled according to the normal (Gaussian) law. To assess the filtration quality, the developed filter is compared with the algorithm of classical two-dimensional convolution with a 5x5 Laplace high-pass filter core.

Authors

References

1. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazheniy [Digital image processing]. M.:
Tekhnosfera, 2005, 1072 p.
2. Mishchenko N.I., Pustynskiy I.N. Metody i sredstva povysheniya tekhnicheskikh kharakteristik
aktivno-impul'snykh televizionno-vychislitel'nykh sistem nablyudeniya [Methods and means of improving
the technical characteristics of active-pulse television-computer surveillance systems],
Doklady Tomskogo gosudarstvennogo un-ta sistem upravleniya i radio-elektroniki [Reports of the
Tomsk State University of Control Systems and Radioelectronics], 2014, No. 3 (35), pp. 47-52.
3. Bezzubik V.V., Belashenkov N.R., Nikiforov V.O. Metod kolichestvennoy otsenki kontrasta
tsifrovogo izobrazheniya [Method for quantitative assessment of digital image contrast],
Nauchno-tekhnicheskiy vestnik SPbGU ITMO [Scientific and Technical Bulletin of St. Petersburg
State University ITMO], 2010, No. 6 (70), pp. 86-88.
4. Milenin N.K. Shumy v formirovatelyakh signala na PZS [Noise in CCD signal conditioners],
Tekhnika kino i televideniya [Film and television technology], 1980, No. 6, pp. 51-57.
5. Priorov A.L., Apal'kov I.V., Khryashchev V.V. Tsifrovaya obrabotka izobrazheniy: ucheb.
posobie [Digital image processing: tutorial]. Yaroslavl': YarGU, 2007, 235 p.
6. Gruzman I.S., Kirichuk V.S. i dr. Tsifrovaya obrabotka izobrazheniy v informatsionnykh
sistemakh: ucheb. posobie [Digital image processing in information systems: a tutorial]. Novosibirsk:
Izd-vo NGTU, 2002, 352 p.
7. Kandidov V.P. i dr. Diskretnoe preobrazovanie Fur'e: ucheb. posobie [Discrete Fourier transform:
tutorial.]. Moscow: fizicheskiy fakul'tet MGU, 2019, 88 p.
8. Sitdikov I.T., A. S. Krylov. Variational image deringing using varying regularization parameter,
Pattern Recognition and Image Analysis, 2015, Vol. 25, No. 1, pp. 96-100.
9. Starovoytov V.V., Golub Yu.I. Poluchenie i obrabotka izobrazheniy na EVM: uchebnometodicheskoe
posobie [Receiving and processing images on a computer: educational and
methodological manual]. Minsk: BNTU, 2018, 204 p.
10. Shapiro L., Stokman Dzh. Komp'yuternoe zrenie [Computer vision]. Moscow: BINOM.
Laboratoriya znaniy, 2006, 752 p.
11. Yane B. Tsifrovaya obrabotka izobrazheniy [Digital image processing]. Moscow: Tekhnosfera,
2007, 584 p.
12. Fisenko V.T., Fisenko T.Yu. Fraktal'nye metody segmentatsii teksturnykh izobrazheniy [Fractal
methods for segmenting texture images], Priborostroenie [Instrumentation], 2013, Vol. 56,
No. 5, pp. 63-70.
13. Shovengerdt R.A. Distantsionnoe zondirovanie. Modeli i metody obrabotki izobrazheniy [Remote
sensing. Models and methods of image processing]. Moscow: Tekhnosfera, 2010, 560 p.
14. Kamenskiy A.V., Kuryachiy M.I. Rekursivno-separabel'nye metody i algoritmy povysheniya
kachestva izobrazheniy v televizionnykh izmeritel'nykh sistemakh [Recursive-separable methods
and algorithms for improving image quality in television measurement systems]. Tomsk,
2018, 10 p.
15. Turulin I.I., Tkachenko M.G. Bystroperestraivaemye tsifrovye fil'try: monografiya [Fasttunable
digital filters: monograph]. Taganrog: Izd-vo TTI YuFU, 2008, 104 p.
16. Shlezinger M.I. Matematicheskie sredstva obrabotki izobrazheniy [Mathematical tools for
image processing]. Kiev: Naukova dumka, 1989, 200 p.
17. Turulin I.I. Osnovy teorii rekursivnykh KIKh-fil'trov: monografiya [Fundamentals of the theory
of recursive FIR filters: monograph]. Taganrog: Izd-vo YuFU, 2016, 264 p.
18. Naito Y., Miyazaki T., Kuroda I. A fast full-search motion estimation method for programmable
processors with a multiply-accumulator, IEEE International Conference on Acoustics,
Speechand Signal Processing, 1996, Vol. 6, pp. 3221-3224.
19. Selyankin V.V., Skorokhod S.V. Analiz i obrabotka izobrazheniy v zadachakh komp'yuternogo
zreniya: ucheb. posobie [Analysis and processing of images in computer vision tasks: a tutorial].
Taganrog: Izd-vo YuFU, 2015, 82 p.
20. Fabijańska A., Sankowski D. Noise adaptive switching median-based filter for impulse noise
removal from extremely corrupted images, IET Image Processing, 2011, Vol. 5, Issue 5,
pp. 472-480. DOI: 10.1049/iet-ipr.2009.0178.
21. Ng P.-E., Ma K.-K. A switching median filter with boundary discriminative noise detection for
extremely corrupted images, IEEE Transactions on Image Processing, 2006, Vol. 15, Issue 6,
pp. 1506-1516. DOI: 10.1109/TIP.2005.871129

Скачивания

Published:

2024-01-05

Issue:

Section:

SECTION I. INFORMATION PROCESSING ALGORITHMS

Keywords:

Image processing, two-dimensional digital filters, recursive algorithms, sharpness, filter, two-dimensional, image