DEVELOPMENT OF A COMPUTER MODEL FOR IMPROVING THE SYSTEM OF PASSIVE HEAT REMOVAL FROM THE HOLDING POOL WITH A TWO-PHASE RING THERMOSIPHON

Abstract

The purpose of this study is to create a computer model that will be used to improve the passive heat removal system from the holding pool with a two-phase annular thermosiphon. This model will allow you to analyze the operation of the system, determine a set of quasi-optimal solutions for its parameters and improve the efficiency of heat removal. The development of such a model can help improve heat transfer processes and improve the efficiency of the system as a whole. Method. To solve this problem, mathematical and computer modeling methods were used, the mechanisms of heat transfer in the system were studied and optimal parameters for effective heat removal were determined, as well as various design options and system parameters were compared to select the most effective solution. The use of these methods provided an integrated approach to the development and improvement of a passive heat removal system with a two-phase ring thermosiphon. Result. A computer model has been developed to improve the system of passive heat removal from the holding pool with a two-phase annular thermosiphon. This model allows you to analyze the operation of the system, improve its parameters and improve the efficiency of heat removal. Creating such a model is an important step in the development and improvement of the system, allowing you to more accurately predict its performance and make the necessary improvements. Conclusion. The developed computer model can be used for further research, improvement of heat removal processes and increase the efficiency of the system as a whole. It allows you to study the heat removal processes in more detail and adjust the operation of the system. The model provides an opportunity to perform numerical calculations, analyze various scenarios and evaluate the effectiveness of changes in system parameters.

Authors

References

1. Bukrinskiy A.M. Bezopasnost' atomnykh stanciy po federal'nym normam i pravilam Rossii i standartam
MAGATE. Sravnenie osnovnykh principov i trebovaniy po obespecheniyu bezopasnosti [Safety of nuclear
power plants according to federal norms and rules of Russia and IAEA standards. Comparison of
the basic principles and requirements for safety]. 3rd ed. Moscow: NTC YaRB, 2019, 196 p.
2. Dmitriev S.M. [i dr.]. Issledovanie lokal'noy gidrodinamiki teplonositelya v smeshannoy aktivnoy
zone reaktora VVER [Investigation of the local hydrodynamics of the coolant in the mixed core of the
VVER reactor], Energetika. Izvestiya vysshikh uchebnykh zavedeniy i energeticheskikh ob"edineniy
SNG [Energy. News of higher educational institutions and energy associations of the CIS], 2020, Vol.
63, No. 2, pp. 151-162. Available at: https://doi.org/10.21122/1029-7448-2020-63-2-151-162.
3. Sorokin V.V. Raschet vremeni puska passivnogo kataliticheskogo rekombinatora vodoroda
lokalizuyushchey sistemy bezopasnosti AES s VVER [Calculation of the start-up time of the passive catalytic
hydrogen recombinator of the localized safety system of nuclear power plants with VVER],
Energetika. Izvestiya vysshikh uchebnykh zavedeniy i energeticheskikh ob"edineniy SNG [Energy. News
of higher educational institutions and energy associations of the CIS], 2022, Vol. 65, No. 1, pp. 67-75.
4. Morozov A.V. [i dr.]. Puti sovershenstvovaniya sistemy passivnogo okhlazhdeniya aktivnoy zony
reaktora VVER [Ways to improve the passive cooling system of the VVER reactor core], Mater. XIV
Mezhdunarodnoy nauchno-tekhnicheskoy konferencii «Problemy sovershenstvovaniya toplivnoenergeticheskogo
kompleksa», Saratov, 30 oktyabrya - 1 noyabrya 2018 [Proceedings of the XIV International
Scientific and Technical Conference "Problems of improving the fuel and energy complex",
Saratov, October 30 - November 1, 2018]. Saratov, 2018, pp. 115-120.
5. Passive Safety Systems and Natural Circulation in Water Cooled Nuclear Power Plants. IAEATECDOC-
1624. Vienna: IAEA, 2009. Mode of access: https://www-pub.iaea.org/MTCD/ Publications/
PDF/te_1624_web.pdf (Date of access: 07.01.2022).
6. Natural circulation in water cooled nuclear power plants: Phenomena, models, and methodology for
system reliability assessments. IAEA-TECDOC-1474. Vienna: IAEA, 2005. Mode of access:
https://www-pub.iaea.org/MTCD/Publications/PDF/TE_1474_web.pdf (Date of access: 05.01.2022).
7. Sierchuła J. Analysis of passive residual heat removal system in AP1000 nuclear power plant, IOP
Conference Series: Earth and Environmental Science, 2019, Vol. 214. Art. ID 012095. Available at:
https://doi.org/10.1088/1755-1315/214/1/012095.
8. Li Feng [et al.]. Design, Experiment, and Commissioning of the Passive Residual Heat Removal System
of hina’s Generation III Nuclear Power PR1000, Science and Technology of Nuclear Installations,
2021, 6 p. Available at: https://doi.org/10.1155/2021/6680400.
9. Dan P.D., Rey D.A. Teplovye truby [Heat pipes], transl. from Engl. by. Yu.A. Zeygarnik. Moscow:
Energiya, 1979, 272 p.
10. Chi S. Teplovye truby: Teoriya i praktika [Heat pipes: Theory and practice][: transl. from Engl. by.
V.Ya. Sidorov. Moscow: Mashinostroenie, 1981, 207 p.
11. Vijayan P.K., Nayak A.K., Kumar N. Chapter 1 - Natural circulation loops - advantages, challenges,
and classification, Single-Phase, Two-Phase and Supercritical Natural Circulation Systems.
Woodhead Publishing, 2019, pp. 1-30. Available at: https://doi.org/10.1016/B978-0-08-102486-
7.00001-9.
12. Sviridenko I.I. [et al.]. Passive Residual Heat Removal System for WWER with the Thermosiphon
Heatexchange Equipment, International Journal of Energy for a Clean Environment, 2015, Vol. 16,
No. 1-4, pp. 209-223. Available at: https://doi.org/10.1615/InterJEnerCleanEnv.2015015683.
13. Sviridenko I.I., Shevelev D.V., Sverdlov V.V. Raschetnye issledovaniya avariynogo teplootvoda VVER
avtonomnoy termosifonnoy SPOT pervogo kontura [Computational studies of the emergency heat sink
of the VVER autonomous thermosiphon SPOT of the first circuit], Tekhnologii obespecheniya
zhiznennogo tsikla yadernykh energeticheskikh ustanovok: Nauch.-tekh. sb. [Technologies for ensuring
the life cycle of nuclear power plants: scientific and technical collection]. Sosnovyy Bor: FGUP
NITI, 2018, Issue 3 (13), pp. 28-41.
14. Sviridenko I.I. Uderzhanie reaktora v podkriticheskom sostoyanii pri zaproektnoy avarii odnovremennym
raskholazhivaniem i dekompressiey pervogo kontura [Keeping the reactor in a subcritical state in case of an
out-of-design accident by simultaneous cooling and decompression of the primary circuit], Izvestiya
vysshikh uchebnykh zavedeniy. Yadernaya energetika [News of higher educational institutions. Nuclear energy],
2019, No. 1, pp. 85-96. Available at: https://doi.org/10.26583/npe.2019.1.08.
15. Instruktsiya po likvidatsii avariy i avariynykh situatsiy na reaktornoy ustanovke energobloka № 5
Zaporozhskoy AES. 05.GT.00.IE.11. OP «Zaporozhskaya AES», 2017 [Instructions for the elimination
of accidents and emergencies at the reactor unit of power unit No. 5 of the Zaporizhia NPP.
05.GT.00.IE.11. OP "Zaporizhia NPP", 2017], 444 p.
16. Vasil'ev,L.L. Teploobmenniki na teplovykh trubakh [Heat exchangers on heat pipes]. Minsk: Nauka i
tekhnika, 1981, 143 p.
17. Bezrodnyy M.K., Pioro I.L., Kostyuk T.O., Fakt K. Protsessy perenosa v dvukhfaznykh
termosifonnykh sistemakh. Teoriya i praktika [Transfer processes in two-phase thermosiphon systems.
Theory and practice], 2005, 704 p.
18. AES «Kudankulam». Klassifikatsiya sistem, oborudovaniya, truboprovodov i elementov teplotekhnicheskoy
chasti. KK.UJA.0.SR.PZ.PR004. Institut «Atomenergoproekt», 2002 [Kudankulam
NPP. Classification of systems, equipment, pipelines and elements of the thermal engineering part.
KK.UJA.0.SR.PZ.PR004. Atomenergoproject Institute, 2002].
19. Blagoveshchenskiy A.Ya. [i dr.]. Kontseptsiya rasshirennogo ispol'zovaniya estestvennoy tsirkulyatsii
teplonositelya pervogo kontura v energoblokakh s VVER-1000 (1200) i perspektivy ee realizatsii [The
concept of expanded use of natural circulation of the primary coolant in power units with VVER-1000
(1200) and prospects for its implementation], Bezopasnost', effektivnost' i ekonomika atomnoy energetiki:
Mater. 8-y Mezhdunar. nauch.-tekhn. konf., Moskva, 23-25 maya 2012 g. [Safety, efficiency and economics
of nuclear energy: Materials of the 8th International Scientific and Technical Conference. Conf.,
Moscow, May 23-25, 2012]. Moscow: Kontsern «Rosenergoatom», 2012, pp. 602-605.
20. Bukin N.V. [i dr.]. Vliyanie passivnykh sistem na protekanie tipichnykh zaproektnykh avariy RU V-392
[The influence of passive systems on the course of typical out-of-design accidents of RU V-392],
Obespechenie bezopasnosti AES s VVER: Mater. 2-y nauch.-tekhn. konf., Podol'sk, 19-23 noyabrya 2001
g. [Ensuring the safety of nuclear power plants with VVER: materials of the 2nd scientific and technical
Conference, Podolsk, November 19-23, 2001]. Available at: http://www.gidropress.podolsk.ru/files/ proceedings/
mntk2001/report1/vpsnptza.pdf (accessed 17 September 2021).
21. Andrushechko S.A. [i dr.]. AES s reaktorom tipa VVER-1000. Ot fizicheskikh osnov ekspluatatsii do
evolyutsii proekta [Nuclear power plant with a VVER-1000 reactor. From the physical foundations of
operation to the evolution of the project]. Moscow: Logos, 2010, 603 p.

Скачивания

Published:

2024-08-12

Issue:

Section:

SECTION III. PROCESS AND SYSTEM MODELING

Keywords:

Simulation computer model, passive heat removal system, fuel pool cooling system