REVEALING THE ELECTRICAL CHARACTERISTICS OF THE DISCHARGE CIRCUIT FOR A HIGH-VOLTAGE LIGHTNING DISCHARGE STAND

Abstract

The steady passage through the atmospheric layer by the launch vehicle where electricity discharges may occur is ensured not only by performance measures, but also by preliminary ground tests. The countries to be carrying out the launch of spacecraft into the orbit have special bench equipment. A particular system of points views has developed to be implemented in standards and other documents, and the given requirements have become obligatory to meet. The current paper is a following part of the research related to the creation of a high-voltage lightning discharge stand which is being developed for testing rocket and space technology products. The main task of this device is the generation of given electric (or electromagnetic) pulses that simulate the effect of lightning discharge on the structural elements of the launch vehicle. There are four pulse current generators in the high-voltage part such as (pulse current generator-A, pulse current generator-B, pulse current generator- C, pulse current generator-D-types), sequentially connected to the load to create a certain form of a common current pulse. Routine loads include: high-voltage grounding table, vertical rack, breakdown testing device. The task of this stage of work was to check the parameters of the current pulse that occurs when the pulse current generator-A discharges to the calibration load to be the high-voltage grounding table. The article illustrated the calculating findings of the pulse parameters of component A-type in the discharge circuit through the development of the pulse generation process: before the moment of short-circuiting of the capacitive storage and from the moment of short-circuiting. The discharge device such as crowbar allows you to connect the load according to a two-circuit circuit at the time of the maximum discharge current. Analytical dependencies of both equivalent electrical circuits of circuits are covered in the article. Differential equations are solved by numerical method, graphs of change of current and voltage of oscillatory pulse A-type in open and closed circuits are obtained. The given activity as well as the calculations made it possible to evaluate the dynamic characteristics of the studied circuit during its operation in one of the fastest flowing and energy-intensive modes of operation. In general, the switching of the discharge circuit to the high-voltage grounding stand with the selected parameters confirms the operability of the VSMR and the achievement of satisfactory characteristics of the given current pulse implemented by the A.-type.

Authors

References

1. Bazelyan E.M., Gorin B.N., Levitov V.I. Fizicheskie i inzhenernye osnovy molniezashchity [Physical
and engineering foundations of lightning protection]. Leningrad: Gidrometeoizdat, 1978, 223 p.
2. Baranov M.I. Izbrannye voprosy elektrofiziki: monografiya: v 3 t. T. 2. Kn. 2: Teoriya
elektrofizicheskikh effektov i zadach [Selected issues of electrophysics: monograph: in 3 vol. Vol. 2,
Book 2: Theory of electrophysical effects and problems]. Khar'kov: Tochka, 2010, 407 p.
3. Burgsdorf V.F. Parametry tokov molnii i vybor ikh raschetnykh znacheniy [Parameters of lightning
currents and the choice of their design values], Elektrichestvo [Electricity], 1990, No. 2, pp. 9-24.
4. Uman M.A. Natural and artificially-initiated lightning and lightning test standards, Proceedings of the
IEEE, 1988, Vol. 76, No. 12, pp. 1548-1565. DOI: 10.1109/5.16349.
5. Phillpoyy J. Lightning strike, Flight International, 1972, No. 3316, pp. 414.156.
6. Plumer J.A., Perry B.L. An Analysis of Lightning strikes in Airline Operation in the USA and Europe,
Conference on Lightning and static Electricity, England, April 14-17, 1975, pp. 502-513.
7. Obrabotka i analiz sluchaev porazheniya samoletov grazhdanskoy aviatsii razryadami atmosfernogo
elektrichestva. Otchet o NIR №GR80059418, Inv. № B887910 [Processing and analysis of cases of
damage to civil aviation aircraft by atmospheric electricity discharges. Research report
No. GR80059418, Inv. No. B887910]. Riga. GosNII ER AT GA, 1980, 88 p.
8. Aufbauer Н. Atmosphärische Entladungen auf Luftfahrzeuge, Electrofechn und Maschinenbau, 1978,
No. 9, pp. 417-421.
9. Scully Robert. Lightning Protection for the Orion Space Vehicle NASA: Johnson Space Centre. Houston,
Texas. 77058-3696. (Professional English). Text: direct, 10 p.
10. Bachelier E., Issac F., Quenum W., Enjablert V., Mohedano L. Lightning Protection of SOYUZ and
VEGA launching pads, 2012 International Conference on Lightning Protection (ICLP), Vienna, Austria,
6 p.
11. Molniya udarila v raketu «Soyuz» pri starte s Plesetska. 27 maya 2019 [Lightning struck the Soyuz
rocket during launch from Plesetsk. May 27, 2019]. Available at: https://tass.ru/proissestviya/6475178
(accessed 18 January 2021).
12. SAE ARP 5412: 2013. Aircraft Lightning Environment and Related Test Waveforms, SAE Aerospace.
USA, 2013, pp. 1-56.
13. SAE ARP 5416: 2013. Aircraft Lightning Test Methods, SAE Aerospace. USA, 2013, pp. 1-145.
14. IEC 62305-1: 2010 «Protection against lightning. Part 1: General principles». Geneva, IEC Publ.,
2010.
15. KT-160D. Kvalifikatsionnye trebovaniya RF. Usloviya ekspluatatsii i okruzhayushchey sredy dlya
bortovogo aviatsionnogo oborudovaniya. Trebovaniya, normy i metody ispytaniy [KT-160D. Qualification
requirements of the Russian Federation. Operating and environmental conditions for avionics
equipment. Requirements, standards and test methods]. Moscow: Gosstandart RF, 2004.
16. Golosiy A.S., Karlovskiy M.Yu., Samarkin A.L., Sakhabudinov R.V. Stend ispytaniy na stoykost'
rakety-nositelya k vozdeystviyu molnievogo razryada [Test bench for the resistance of the launch vehicle
to the effects of lightning discharge], II Vserossiyskiy forum «Vzglyad molodezhi na puti
razvitiya OPK»: Sb. tezisov, Reutov, 3-4 iyunya, 2021 g. [II All-Russian orum “Youth’s view on the
development of the defense industry”: ollection of abstracts, Reutov, June 3-4, 2021], pp. 45-53.
17. Burlutskiy S.G., Golosiy A.S., Kovalev A.P., Sakhabudinov R.V. Otsenivanie kharakteristik tokovykh
generatorov imitatsii molnievykh razryadov [Assessing the characteristics of current generators simulating
lightning discharges], Tr. VKA im. A.F. Mozhayskogo [Proceedings of VKA im.
A.F. Mozhaisky], 2022, Issue 682, pp. 171-182.
18. Shishkov D.V., YAkovlev A.A., Sakhabudinov R.V., Golosiy A.S. Raschet parametrov tokovykh
impul'sov v razryadnykh konturakh vysokovol'tnogo stenda molnievogo razryada [Calculation of the
parameters of current pulses in the discharge circuits of a high-voltage lightning discharge stand], Sb.
materialov nauchno-tekhnicheskoy konferentsii «Modelirovanie parametrov atmosfery pri primenenii
sistem vooruzheniya» [ ollection of materials of the scientific and technical conference “Modeling
atmospheric parameters when using weapons systems”]. Korolev: GBU «4 TSNII» Minoborony
Rossii, 2022, pp. 47-51.
19. Serov M.Yu., Yakovlev A.A., Sakhabudinov R.V., Golosiy A.S. Parametricheskiy analiz rezul'tatov
rascheta ispytatel'nykh impul'sov v ekvivalentnykh konturakh GIT-A, GIT-D, GIT-VS [Parametric
analysis of the results of calculating test pulses in equivalent circuits GIT-A, GIT-D, GIT-VS], Sb.
dokladov VUNTS VVS «VVA im. prof. N.E. ZHukovskogo i YU.A. Gagarina», 23-25 noyabrya 2022
[ ollection of reports of the VUN Air orce “VVA named after. prof. N.E. Zhukovsky and
Yu.A. Gagarin", November 23-25, 2022], pp. 222-226.
20. Ovchinnikova N.A., Sakhabudinov R.V., Golosiy A.S. Sozdanie stendov modelirovaniya pryamogo i
nepryamogo vozdeystviya molnievogo razryada na elementy raketno-kosmicheskoy tekhniki [Creation
of stands for modeling the direct and indirect effects of lightning discharge on elements of rocket and
space technology], Sb. dokladov Pyatoy Mezhdunarodnoy nauchnoy konferentsii «Aerokosmicheskoe
priborostroenie i ekspluatatsionnye tekhnologii», 4-20 aprelya 2024 [Collection of reports of the Fifth
International Scientific onference “Aerospace Instrumentation and Operational Technologies”, April
4-20, 2024]. Saint Petersburg: GUAP, 2024, pp. 111-115.
21. Baranov M.I., Buryakovskiy S.G., Rudakov S.V. Instrumental'noe obespechenie v Ukraine naturnykh
ispytaniy ob"ektov energetiki, aviatsionnoy i raketno-kosmicheskoy tekhniki na stoykost' k
vozdeystviyu impul'snogo toka iskusstvennoy molnii [Instrumental support in Ukraine for full-scale
testing of energy facilities, aviation and rocket and space technology for resistance to the effects of
pulsed current of artificial lightning], Elektrotekhnika i Elektromekhanika [Electrical engineering and
electromechanics], 2018, No. 4, pp. 45-53. ISSN 2074-272X.
22. Baranov M.I., Buryakovskiy S.G., Rudakov S.V. Metrologicheskoe obespechenie v Ukraine ispytaniy
ob"ektov energetiki, aviatsionnoy i raketno-kosmicheskoy tekhniki na stoykost' k vozdeystviyu
impul'sov toka (napryazheniya) iskusstvennoy molnii i kommutatsionnykh impul'sov napryazheniya
[Metrological support in Ukraine for testing energy facilities, aviation and rocket and space technology
for resistance to the effects of current (voltage) pulses of artificial lightning and switching voltage
pulses], Elektrotekhnika i Elektromekhanika [Electrical engineering and electromechanics], 2018,
No. 5, pp. 44-53. ISSN 2074-272X.

Скачивания

Published:

2024-08-12

Issue:

Section:

SECTION III. PROCESS AND SYSTEM MODELING

Keywords:

Lightning discharge, high-voltage lightning discharge stand, pulse current generator, short circuit, capacitive accumulator, pulse, crowbar, electric circuit, current maximum, inductance