MODIFICATION OF THE IMPLEMENTATION OF THE JACOBI METHOD IN SIMULATING SUPERDIFFUSION OF RADON ON RECONFIGURABLE COMPUTER SYSTEMS
Abstract
When studying natural objects, the problem of modeling complex systems with a structure that cannot be described by means of Euclidean geometry tools often arises, therefore, fractal geometry and the corresponding mathematical apparatus are used to represent them. So the model of radon transport in an inhomogeneous medium, using superdiffusion, displays real data more accurately than the classical one. An increase in the concentration of radon in the air is one of the signs of an approaching earthquake, which makes it necessary to simulate the propagation of this radioactive inert gas in real time. Reconfigurable computing systems have great potential for solving problems in real time, but the currently existing means for solving systems of linear equations have low efficiency due to the irregular structure of matrices obtained by discretizing the radon superdiffusion model using adaptive grids. The basic subgraph of the Jacobi method is transformed as follows: the input data is vectorized, the structure of the frame in which the value of one unknown is calculated is divided into several microframes, parallelizing the calculations in the first microframe, where the sum of the products of the matrix coefficients and the values of the unknowns from the previous iteration is performed. The results obtained are buffered for subsequent delivery to the second microframe, where the final processing and output of the iteration result takes place. The described approach allows to reduce equipment downtime when solving a system of linear equations with sparse irregular matrices, and gives a speed gain by 5–15 times in comparison with existing methods for solving linear system on reconfigurable computing systems.
References
of unsteady diffusion-advection of radon in the soil-atmosphere system], Vestnik KRAUNTS.
Fiz.-mat. nauki [Bulletin KRASEC. Physical and Mathematical Sciences], 2010, Issue 1 (1),
pp. 39-45.
2. Parovik R.I., Shevtsov B.M. Protsessy perenosa radona v sredakh s fraktal'noy strukturoy [Radon
transfer processes in media with fractal structure], Matematicheskoe modelirovanie
[Mathematical modeling], 2009, Vol. 21, No. 8, pp. 30-36.
3. Terekhov K.M., Vassilevski Yu.V. Two-phase water flooding simulations on dynamic adaptive
octree grids with two-point nonlinear fluxes, Russian Journal of Numerical Analysis and
Mathematical Modelling, 2013, Vol. 28, No. 3, pp. 267-288.
4. Afendikov A.L., Men'shov I.S., Merkulov K.D., Pavlukhin P.V. Metod adaptivnykh dekartovykh
setok dlya resheniya zadach gazovoy dinamiki [The method of adaptive cartesian grids for solving
problems of gas dynamics]. Moscow: Rossiyskaya akademiya nauk, 2017, 63 p.
5. Sukhinov A.A. Postroenie dekartovykh setok s dinamicheskoy adaptatsiey k resheniyu [Construction
of Cartesian grids with dynamic adaptation to the solution], Matematicheskoe
modelirovanie [Mathematical modeling], 2010, Vol. 22, No. 1, pp. 86-98.
6. Levin I.I., Dordopulo A.I., Pelipets A.V. Realizatsiya iteratsionnykh metodov resheniya sistem
lineynykh uravneniy v zadachakh matematicheskoy fiziki na rekonfiguriruemykh
vychislitel'nykh sistemakh [Implementation of iterative methods for solving systems of linear
equations in problems of mathematical physics on reconfigurable computing systems], Vestnik
YuUrGU. Seriya: Vychislitel'naya matematika i informatika [Bulletin of SUSU. Series: Computational
Mathematics and Computer Science], 2016, Vol. 5, No. 4, pp. 5-18. DOI:
10.14529/cmse160401.
7. Pelipets A.V. Rasparallelivanie iteratsionnykh metodov resheniya sistem lineynykh
algebraicheskikh uravneniy na rekonfiguriruemykh vychislitel'nykh sistemakh [Parallelization
of iterative methods for solving systems of linear algebraic equations on reconfigurable computing
systems], Super-komp'yuternye tekhnologii (SKT-2016): Mater. 4-y Vserossiyskoy
nauchno-tekhnicheskoy konferentsii [Super-computer Technologies (SKT-2016): Materials of
the 4th All-Russian Scientific and Technical Conference], 2016, pp. 194-198.
8. Levin I.I., Pelipets A.V. Effektivnaya realizatsiya rasparallelivaniya na rekonfiguriruemykh
sistemakh [Effective implementation of parallelization on reconfigurable systems], Vestnik
komp'yuternykh i informatsionnykh tekhnologiy [Bulletin of Computer and Information Technologies],
2018, No. 8, pp. 11-16.
9. Levin I.I., Dordopulo A.I., Sorokin D.A., Kalyaev Z.V., Doronchenko Yu.I. Rekonfiguriruemye
komp'yutery na osnove plis Xilinx Virtex Ultrascale [Reconfigurable computers based on
FPGA Xilinx Virtex Ultrascale], Parallel'nye vychisli-tel'nye tekhnologii (PaVT'2019):
Korotkie stat'i i opisaniya plakatov XIII Mezhduna-rodnoy nauchnoy konferentsii [Parallel
Computing Technologies (PaVT'2019): Short articles and poster descriptions of the XIII International
Scientific Conference], 2019, pp. 288-298.
10. Dordopulo A.I., Levin I.I. Metody reduktsii vychisleniy dlya programmirovaniya gibridnykh
rekonfiguriruemykh vychislitel'nykh sistem [Methods of reduction of calculations for programming
hybrid reconfigurable computing systems], XII mul'tikonferentsiya po problemam
upravleniya (MKPU-2019): Mater. XII mul'tikonferentsii [XII Multi-conference on management
problems (MCPU-2019): Materials of the multi-conference]: in 4 vol., 2019, pp. 78-82.
11. Levin I.I., Pelipets A.V., Sorokin D.A. Reshenie zadachi LU-dekompozitsii na rekonfiguriruemykh
vychislitel'nykh sistemakh: otsenka i perspektivy [Solving the LU-decomposition problem on reconfigurable
computing systems: assessment and prospects], Izvestiya YuFU. Tekhnicheskie nauki
[Izvestiya SFedU. Engineering Sciences], 2015, No. 7 (168), pp. 62-70.
12. Guzik V.F., Kalyaev I.A., Levin I.I. Rekonfiguriruemye vychislitel'nye sistemy [Reconfigurable
computing systems], under the general ed. of. I.A. Kalyaeva. Rostov-on-Don: Izd-vo YuFU,
2016, 472 p.
13. Samarskiy A.A., Nikolaev E.S. Metody resheniya setochnykh uravneniy [Methods for solving
grid equations]. Moscow: Nauka, 1978, 592 p.
14. Kalyaev I.A., Levin I.I., Semernikov E.A., Shmoilov V.I. Reconfigurable multipipeline computing
structures. New York: Nova Science Publishers, 2012, 330 р.
15. Mandel'brot B. Fraktal'naya geometriya prirody [Fractal geometry of nature]. Moscow: Institut
komp'yuternykh issledovaniy, 2002, 656 p.
16. Kasarkin A.V. Metod resheniya grafovykh NP-polnykh zadach na rekonfiguriruemykh vychislitel'nykh
sistemakh na osnove printsipa rasparallelivaniya po iteratsiyam [A method for
solving graph NP-complete problems on reconfigurable numerical systems based on the principle
of parallelization by iterations], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU.
Engineering Sciences], 2020, No. 7 (217), pp. 121-129.
17. Nakhushev A.M. Drobnoe ischislenie i ego primenenie [Fractional calculus and its application].
Moscow: Fizmatlit, 2003, 272 p.
18. Nakhusheva V.A. Differentsial'nye uravneniya matematicheskikh modeley nelokal'nykh
protsessov [Differential equations of mathematical models of nonlocal processes]. Moscow:
Nauka, 2006, 173 p.
19. Zaslavsky G.M. Chaos, fractional kinetics, and anomalous transport, Physics Reports, 2002,
Vol. 371, pp. 461-580.
20. Krylov S.S., Bobrov N.Yu. Fraktaly v geofizike [Fractals in geophysics]. Saint Petersburg:
Izd-vo S-Pb. universiteta, 2004, 138 p.