MAGNETOMETRIC SENSOR SYSTEMS FOR MARINE MOBILE ROBOTS
Abstract
The paper proposes the use of marine mobile robots to counter mining, detection, classification and localization of mines. In accordance with the purpose, search and reconnaissance devices have been identified for the survey of water areas that are capable of operating autonomously or in remote control mode with decision-making support. The analysis of existing types of sensor systems for the survey of water areas is carried out. The main results of theoretical and experimental studies of ways to improve magnetometric sensor systems of marine robots are presented. It is proposed, based on the criterion of ensuring the greatest capabilities of marine robots for detecting and the pace of searching in offline mode with known weight and size limitations, the construction of a magnetometric sensor system with automated recognition of explosive objects. For the purposes of automated classification of search objects, it is proposed to take advantage of neural networks, which, unlike traditional machine learning, provide the possibility of high-level abstract expression of the semantics of internal connections between data by choosing architectural solutions. The structure of the neural network is obtained based on the linear classification of explosive objects according to two parameters of the training sample. Based on a proven training sample and a classifying function by two parameters, for a multichannel magnetometric system, an implementation of the neural network structure has been developed that takes into account, in addition to the ferromagnetic mass and depth of occurrence, the parameters of the geometric shape of real explosive objects. The directions of improving and increasing the range of ferrosonde sensors as the most suitable for the construction of magnetometric detection systems for marine mobile robots are determined. A method is proposed to increase the sensitivity of ferrosonde magnetometric sensors of marine robots through the use of new magnetic materials and circuit solutions. To create highly sensitive ferrosonde magnetometric sensors, the use of cores made of amorphous cobalt-based alloys of the AMAG-170 type is proposed, providing a potential opportunity to increase the conversion coefficient (sensitivity) of the sensor system by increasing the excitation frequency of the core of the ferrosonde. The functional diagram of the layout of the developed magnetometric ferrosonde sensor system based on two rod cores made of amorphous alloy AMAG–170 is presented.
References
Forces], Arsenal Otechestva [Arsenal of the Fatherland], 2021, No. 1 (51), pp. 60-65.
2. Bykova V.S., Mashoshin A.I., Pashkevich I.V. Algoritm manevrirovaniya avtonomnogo
neobitaemogo podvodnogo apparata pri provodke sudna cherez zaminirovannyy rayon [Increasing
the search capabilities of autonomous uninhabited underwater vehicles through the
use of multichannel magnetometric systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2021, No. 1 (218), pp. 93-101.
3. Sokolov N.A. Rychkov A.V. Povyshenie poiskovykh vozmozhnostey avtonomnykh
neobitaemykh podvodnykh apparatov za schet primeneniya mnogokanal'nykh
magnitometricheskikh sistem [Increasing the search capabilities of autonomous uninhabited
underwater vehicles through the use of multichannel magnetometric systems], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2021, No. 1 (218), pp. 59-72.
4. Tsentral'noe konstruktorskoe byuro morskoy tekhniki «Rubin» [Central Design Bureau of marine
equipment "Rubin"]. Available at: http://ckb-rubin.ru/ckb_mt_rubin/ (accessed 05 May 2021).
5. Ol'khovskiy S.V., Stepanov A.V. Magnitometricheskie razvedki v akvatorii Fanagorii
[Magnetometric surveys in the Phanagoria water area], Voprosy podvodnoy arkheologii [Questions
of underwater archaeology], 2013, No. 1, pp. 53-58.
6. Zvezhinskiy S.S., Parfentsev I.V. Metod magnitometricheskogo obnaruzheniya vzryvoopasnykh
predmetov [Method of magnetometric detection of explosive objects], Spetsial'naya tekhnika [Special
technique], 2008, No. 2, pp. 8-17.
7. Shcherbakov G.N., Antselevich M.A. Novye metody obnaruzheniya skrytykh ob"ektov: bor'ba
s terrorizmom, gumanitarnoe razminirovanie, zashchita informatsii, kontrol' podzemnykh
kommunikatsiy, arkheologiya, ekologiya [New methods of detecting hidden objects: combating
terrorism, humanitarian demining, information protection, control of underground communications,
archeology, ecology]. Moscow: El'f IPR, 2011, 503 p.
8. Billings S., Pasion C., Walker S., Beran L. Magnetic models of unexploded ordnance, IEEE
Transactions on Geoscience and Remote Sensing, 2006, Vol.: 44, Issue 8, pp. 2115-2124.
9. Sistemy minirovaniya. AO «NIII» [Mining systems. JSC "NIII"]. Available at:
http://aoniii.ru/?page_id=294 (accessed 23 Desember 2021).
10. Minnoe oruzhie. AO «Kontsern morskoe podvodnoe oruzhie – Gidropribor» [Mine weapons.
JSC "Concern marine underwater weapons – Hydropribor"]. Available at: https://gidropribor.ru/
production/mines/ (accessed 23 Desember 2021).
11. Kellekher. Dzh., Mak-Neymi B., d’Arsi A. Osnovy mashinnogo obucheniya dlya
analiticheskogo prognozirovaniya. Algoritmy, rabochie primery i tematicheskie issledovaniya
[Fundamentals of machine learning for analytical forecasting. Algorithms, working examples
and case studies]: Trans. from english. Saint Petersburg: Dialektika, 2019, 656 p.
12. Tim Gätcke. Working with Vallon Magnetometers. General Background for Operators and
Trainers. VALLON GmbH: Germany, 2019, 54 p.
13. Detektory i sistemy dlya razminirovaniya. Miny, samodel'nye vzryvnye ustroystva, boevye
elementy i nerazorvavshiesya boepripasy [Detectors and systems for mine clearance. Mines,
improvised explosive devices, combat elements and unexploded ordnance]. Eningen.
Germaniya: Vallon, 2021, 47 p.
14. Aggarval Ch. Neyronnye seti i glubokoe obuchenie: uchebnyy kurs [Neural networks and deep
learning: a training course]: Trans. from english. Saint Petersburg: Dialektika, 2020, 752 p.
15. Rychkov A.V., Shcherbakov G.N., Sokolov N.A. Ryabukhin D.A. K voprosu sozdaniya
dorozhnykh inzhenernykh razvedyvatel'nykh mashin s mnogokanal'nymi sistemami
obnaruzheniya vzryvoopasnykh predmetov [On the issue of creating road engineering reconnaissance
vehicles with multichannel systems for detecting explosive objects], Bezopasnost'
zhiznedeyatel'nosti [Life safety], 2021, No. 11, pp. 51-60.
16. Sokolov N.A., Shastin I.D., Ryabukhin D.A., Rudakov I.A. Chetyrekhzondovyy
magnitometricheskiy iskatel'. Patent Rossiyskoy Federatsii ot 30.11.2020 № RU201140U1
[Four-probe magnetometric finder. Patent of the Russian Federation No. RU201140U1 dated
11/30/2020].
17. Pattanayak S. Glubokoe obuchenie i TensorFlow dlya professionalov [Deep learning and
TensorFlow for professionals]: Trans. from english. Saint Petersburg: Dialektika, 2020, 480 p.
18. Rashka S., Mirdzhalili V. Python i mashinnoe obuchenie. Mashinnoe i glubokoe obuchenie s
ispol'zovaniem Python, Scikit-Learn i TensorFlow [Python and machine learning. Machine
and deep learning using Python, Scikit-Learn and TensorFlow]. Saint Petersburg: Dialektika,
2019, 420 p.
19. Amelichev V.V., Abanin V.V. i dr. Razvitie tekhnologiy magnitopoluprovodnikovykh
mikrosistem [Development of technologies of magnetopoluprovodnik Microsystems],
Izvestiya VUZov. Elektronika [Proceedings of Universities. Electronics], 2015, Vol. 20, No. 5,
pp. 505-510.
20. Vlaskin K.I. Razrabotka elektromagnitnykh sistem malogabaritnykh pervichnykh
preobrazovateley ferrozondovogo tipa: diss. … kand. tekhn. nauk [Development of electromagnetic
systems of small-sized primary ferrosonde type converters: cand. of eng. sc. diss.].
Izhevsk: IzhGTU im. M.T. Kalashnikova, 2014. 150 p.
21. Mushnikov N.V., Popov A.G., Potapov A.P., Lukshina V.A. Nanokristallicheskie magnitnye
materialy. Fizika magnitnykh materialov i nanostruktur [Nanocrystalline magnetic materials.
Physics of magnetic materials and nanostructures], ed. by V.V. Ustinova, N.V. Mushnikova,
V.Yu. Irkhina. Ekaterinburg: Institut fiziki metallov im. M.N. Mikheeva UrO RAN, 2020, 664 p.
22. Klassifikatsiya elektronnykh usiliteley [Classification of electronic amplifiers]. Available at:
https://ru.wikipedia.org/wiki/Klassifikatsiya_elektronnykh_usiliteley (accessed 20 Desember
2021).
23. Rychkov A.V., Sokolov N.A., Shcherbakov G.N., Prokhorkin A.G., Feshchenko Ya.V.
Povyshenie chuvstvitel'nosti ferrozondovykh preobrazovateley magnitnogo polya dlya
perenosnykh magnitometrov [Increasing the sensitivity of ferrosonde magnetic field converters
for portable magnetometers], Boepripasy [Ammunition], 2021, No. 2, pp. 70-76.
24. Afanas'ev Yu.V. Ferrozondovye pribory [Ferrosonde devices]. Leningrad: Energoatomizdat,
1986, 187 p.
25. Sokolov N.A. Ferrozondovyy magnitometricheskiy datchik. Patent RF na izobretenie ot
19.10.2021 № 2757650 [Ferrosonde magnetometric sensor. RF Patent for invention
No. 2757650 dated 19.10.2021].
26. Sokolov N.A. Programma obrabotki signalov v mnogokanal'nom magnitometricheskom
obnaruzhitele. Svidetel'stvo RF na programmu dlya EVM ot 13.05.2021 № 2021617334 [Signal
processing program in a multichannel magnetometric detector. Certificate of the Russian
Federation for a computer program dated 13.05.2021 No. 2021617334].