THE APPLICATION OF COMPLEX DESCRIPTORS IN SOLVING A SLAM TASK
Abstract
The actual problem of determining all six coordinates (three linear and three angular) of the current position of a mobile robot (unmanned aerial vehicle) from video rangefinder images of the external environment (volumetric colored point clouds) formed by an onboard integrated vision system built on the basis of a 3D rangefinder sensor (lidar) and a color video camera while moving (flying) in an unknown environment is considered. An algorithm of video navigation based on the use of complexed (video-rangefinder) descriptors is proposed, for the description of which visual and geometric parameters are used. The rules for the formation of a complex descriptor are formulated, which ensure the allocation of special (central) points of the descriptor using the Sobel operator and the calculation of brightness and geometric parameters in its local area. The addition of the brightness parameters of the descriptor provided by the video camera with the geometric parameters provided by the rangefinder sensor removes the problem of invariance of the descriptor to the scale and thereby significantly reduces the complexity of calculations when selecting it. The rules for finding complexed descriptors corresponding to each other in a sequence of complexed images are described, based on calculating the difference in brightness and geometric parameters of the compared descriptors. The estimation of the error in solving the navigation problem using the integrated descriptors was performed depending on the error of the sensors of the vision system and the geometric dimensions of the descriptor. By constructing histograms of the solution of the navigation problem for each coordinate of the control object for all pairs of descriptors corresponding to each other, a statistically stable high reliability of the solution of the complete navigation problem has been achieved. At the same time, the error in solving the navigation task turned out to be an order of magnitude smaller than the error in the formation of complex images by the technical vision system. The use of complex descriptors made it possible, with a relatively small amount of calculations, to solve the complete navigation problem with acceptable accuracy, which provides a solution to the SLAM problem on the onboard computations at the pace of movement of the control object. The effectiveness of the proposed algorithmic and developed software and hardware is confirmed by field experiments conducted in real conditions of various environments.
References
struktury adaptivnykh robotov [Homogeneous control structures of adaptive robots]. Moscow:
Nauka, 1990, 147 p.
2. Besl P.J., McKay Neil D. A Method for Registration of 3-D Shapes, IEEE Transactions on
pattern analysis and machine intelligence, 1992, Vol. 14, No. 2, pp. 239-256.
3. Zhang Zhengyou. Iterative point matching for registration of free-form curves and surfaces,
International Journal of Computer Vision, 1994, Vol. 13 (12), pp. 119-152.
4. Noskov V.P., Noskov A.V. Sistema ekstremal'noy navigatsii tsekhovogo transportnogo robota
[System navigation and extreme shop transport robot], Iskusstvennyy intellekt v tekhnicheskikh
sistemakh: Sb. nauchnykh trudov [Artificial intelligence in engineering systems: Collection of
scientific papers]. Moscow: Gos.IFTP. 1998, pp. 136-144.
5. Lakota N.A., Noskov V.P., Rubtsov I.V., Lundgren Ya.-O. Moor F. Opyt ispol'zovaniya
elementov iskusstvennogo intellekta v sisteme upravleniya tsekhovogo transportnogo robota
[The experience of using artificial intelligence elements in the control system of a shop
transport robot], Mekhatronika [Mechatronics], 2000, No. 4, pp. 44-47.
6. Noskov V.P., Noskov A.V. Raspoznavanie orientirov v dal'nometricheskikh izobrazheniyakh
[Recognition of landmarks in rangefinder images], Sb. MGU «Mobil'nye roboty i
mekhatronnye sistemy» [Collection of MSU "Mobile robots and mechatronic systems", 2001,
pp. 179-192.
7. Mitra N., Gelfand N., Pottmann H., Guibas L.J. Registration of Point Cloud Data from a Geometric
Optimization Perspective, Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing, 2004, pp. 22-31.
8. Noskov V.P., Noskov A.V. Navigatsiya mobil'nykh robotov po dal'nometricheskim
izobrazheniyam [Navigation of mobile robots by rangefinder images], Mekhatronika,
avtomatizatsiya, upravlenie [Mechatronics, automation, control], 2005, No. 12, pp. 16-21.
9. Noskov V.P., Rubtsov I.V., Romanov A.Yu. Formirovanie ob"edinennoy modeli vneshney sredy
na osnove informatsii videokamery i dal'nomera [Formation of a combined model of the external
environment based on information from a video camera and a rangefinder], Mekhatronika,
avtomatizatsiya, upravlenie [Mechatronics, automation, control], 2007, No. 8, pp. 2-5.
10. Nüchter A., Lingemann K., Hertzberg J., Surmann H. 6D SLAM - 3D Mapping Outdoor Environments,
Journal of Field Robotics, September 2007, Vol. 24, No. 8-9, pp. 699-722.
11. Segal A., Haehnel D., Thrun S. Generalized-ICP, Proc. of Robotics: Science and Systems, RSS,
2009.
12. Zagoruyko S.N., Noskov V.P. Registratsiya dal'nometricheskikh i televizionnykh dannykh pri
postroenii trekhmernoy modeli vneshney sredy [Registration of rangefinder and television data
in the construction of a three-dimensional model of the external environment], Inzhenernyy
zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, Issue 8.
vailable at: http://engjournal.ru/catalog/pribor/robot/933.html.
13. Pomerleau F., Colas F., Siegwart R., Magnenat S. Comparing ICP Variants on Real-World
Data Sets, Autonomous Robots, April 2013, Vol. 34, No. 3, pp. 133-144.
14. Bylow E., Sturm J., Kerl C., Kahl F., Cremers D. Real-Time Camera Tracking and 3D Reconstruction
Using Signed Distance Functions, Proceedings of "Robotics: Science and Systems".
Berlin, Germany, 2013, Vol. 9.
15. Kaz'min V.N., Noskov V.P. Vydelenie geometricheskikh i semanticheskikh ob"ektov v
dal'nometricheskikh izobrazheniyakh dlya navigatsii robotov i rekonstruktsii vneshney sredy
[Selection of geometric and semantic objects in rangefinder images for robot navigation and
reconstruction of the external environment], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2015, No. 10 (171), pp. 71-83.
16. Noskov V.P., Kiselev I.O. Trekhmernyy variant metoda Khafa v rekonstruktsii vneshney sredy
i navigatsii [A three-dimensional version of the Hough method in the reconstruction of the external
environment and navigation], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics,
automation, control], 2018, No. 8, pp. 552-560.
17. Noskov V.P., Kiselev I.O. Ispol'zovanie tekstury lineynykh ob"ektov dlya postroeniya modeli
vneshney sredy i navigatsii [Using the texture of linear objects to build a model of the external
environment and navigation], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, automation,
control], 2019, No. 8, Vol. 20, pp. 490-497.
18. Noskov V.P., Gubernatorov D.V. Ekstremal'naya navigatsiya po 3D-izobrazheniyam v
mobil'noy robototekhnike [Extreme navigation on 3D images in mobile robotics],
Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, automation, control], 2021, No. 11,
Vol. 22, pp. 594-600.
19. David L. Object recognition from local scale-invariant features, Proceedings of the International
Conference on Computer Vision, 1999, Vol. 2, pp. 1150.
20. Bay H., Tuytelaars T., Gool L.V. SURF: Speeded Up Robust Features, Computer Vision and
image Understanding, 2008. Available at: http: // www.vizion.ee.ethz.ch/~surf/eccv06.pdf.
21. Ke Y., Sukthankar R. PCA-SIFT: A More Distinctive Representation for Local Image Descriptors.
Available at: http://www.cs.cmu.edu/~rahuls/pub/cvpr2004-keypoint-rahuls.pdf.
22. Duda R., Hart P. Pattern Classification and Scene Analysis. John Wiley and Sons, 1973,
pp. 271-272.
23. Gonzalez R., Woods R. Digital Image processing. Moscow: Technosphere, 2005, 1007 p.
24. Kevin P. Murphy. Gaussians, 2006.
25. Ivashechkin A.P., Vasilenko A.Yu., Goncharov B.D. Metody nakhozhdeniya osobykh tochek
izobrazheniya i ikh deskriptorov [Methods of finding singular image points and their descriptors],
Molodoy uchenyy [Young Scientist], 2016, No. 15, pp. 138-140. Available at:
https://moluch.ru/archive/119/33106/ (accessed 06 March 2020).
26. Available at: http: // www.asus.com/ Multimedia/Xtion_PRO_LIVE/.